The cost of photovoltaic systems (panels and inverter) has dropped to about 2 to 3 dollars per watt. At this price systems have payback times in the 10 to 15 year range, regardless of size. This assumes a cost of about 10 cents a kilowatt hour (kW-hr) for electricity.

Here are a number of nuts and bolts issues for those interested in solar power. First and foremost you must have a location with southern exposure. Even a small amount of shade can seriously reduce energy production. For most this means a roof top location, but it needn’t be if you have the space to put the array on the ground. The simplest mounting puts the panels flat on the roof. The pitch of the roof is not all that important as long as it faces south.

The amount of space needed for an array of course varies as to how much total power you want to produce. Different manufacturers make panels in different sizes (watts) but the total space needed is the same because all PV panels have the same efficiency, about 15 %. Five 100 watt panels will take up the same space as one 500 watt panel. One kW requires about 80 square feet of space.

A big decision is whether the array is isolated or connected to the electrical grid. Grid-tied systems here in Arkansas can take advantage of net metering. This means that the power produced by the panels can actually make a meter run backwards if they are producing more power than the home is consuming at any time. About the only disadvantage of a grid-tied system is that when the line goes down, so does the solar power production. This is necessary to protect power line workers.

The alternative to grid-tied is to go entirely off line by buffering production with batteries. This avoids the aforementioned problem, but greatly increases the cost and “hassle factor” of the system. This is only practical when connection to the grid is cost prohibitive, as in remote locations.

The total amount of energy produced by a system is obtained by the total wattage of a system. For example a 1 kilowatt system can produce a maximum of one kilowatt hour only when the sun angle is ideal. Averaged over a year, a simple rule of thumb is that you can get 4 hours of net production per day. Hence a 1 kW system can be expected to produce 4 kW-hrs per day, more some days, less others.

Let’s use an average consumption of 1000 kW-hrs per month (close to the average in Arkansas) to determined a system sized to replace 100 % of electric needs. 1000 kW-hrs per month means 33 kw-hrs per day. Divide that by 4 to get a a little over 8 kW system. To allow for some inefficiencies say we use a 9 kW system. At 2.5 dollars a watt, the total cost would be 22,500 $. The 30% federal tax rebate brings the final cost down to 15,750 $. Sales taxes and installation will add to the cost, but these numbers can be used to approximate a cost if you are interested in going solar.