Category Archives: Environment

icey

Selective Environmental Review for 2015

A review of environmental protection, locally, nationally and internationally are all somewhat positive for 2015, especially when it comes to clean air and climate change issues.

Without doubt the biggest win for the environment was the December signing of an agreement by representatives from 190 countries to rein in global warming by reducing Carbon Dioxide (CO2) emissions. Most of the world, with the exception a few countries such as North Korea and the republican leadership here in the US, agree that global warming and rapid climate change must be addressed. Of course the plan is voluntary and each country has submitted there own plan as to what they will achieve but it is an important first step for the international community.

In August this year the Environmental Protection Agency (EPA) finalized the clean power plan. The aim of the plan is to reduce CO2 emissions over 30 % by 2030. Each state has it’s own target. The formula is based on the amount of CO2 released per energy produced. Those states that have already taken steps will have an easier time achieving their particular goal. California has a relatively high mix of non carbon energy sources already so their target is only a 14 % reduction in emissions, whereas Arkansas needs a net reduction of 36 %.

Meeting the targets for the clean power plan will be made easier by the signing of the omnibus budget bill last week. Under the current legislation existing tax credits will not expire. The 30 percent Investment Tax Credit (ITC) for solar will be extended for another three years. It will then ramp down incrementally through 2021, and remain at 10 percent permanently beginning in 2022. The 2.3cent per kWhr Production Tax Credit (PTC) for wind will also be extended through next year. Projects that begin construction in 2017 will see a 20 percent reduction in the incentive. The PTC will then drop 20 percent each year through 2020.

After years of stalling the EPA will begin enforcement of their regional haze rule. This rule is will reduce smog especially in wilderness areas and National Parks by forcing regulation of cross-state emissions. Essentially power plants and Texas and Oklahoma will have to reduce smog which drifts downwind and impacts Arkansas’ air quality.

In November president Obama moved to block construction of the Keystone XL pipeline. This oil pipeline was designed to move the heavy crude oil from the tar sands of Athabasca in Saskatchewan Canada to refineries on the gulf coast. Because of the nature of this heavy crude, most of its refined products would be exported and provide little benefit to the US, while adding a significant carbon load to the atmosphere.

Cleaner water has not escaped attention either. In May the EPA finalized a rule broadening the definition of what waters would be regulated and at the same time clarified the regulations for the Clean Water Act. The original act was initially applied to “navigable waters” and this lead to confusion. What is now called the waters of the United States (WOTUS) rule is meant to protect drinking water specifically and the environment more generally.

Finally a partial win to protect the Buffalo National River (BNR) from agricultural nutrient pollution follows from the state Pollution Control and Environment commission’s 5 year extension of a moratorium. It will prevent development of any new medium to large size hog factories in the watershed of the BNR. The existing 6,500 hog factory at Mt Judea will remain in operation.

EPA Rules and Regulations

The 1960s saw much turmoil, but one positive feature was the growing awareness of the need to protect the environment. Rachel Carson’s seminal book, Silent Spring, was published in 1962 and brought an awareness of the damaging effects of the use of persistent pesticides. Other dramatic events during previous decades such as fogs comprised of sulfuric acid killed people. This occurred when an inversion layer trapped the stagnant air.

In 1969 the Cuyahoga River in Cleveland OH caught on fire, causing hundreds of thousands of dollars of damage to a couple of bridges. The fire was a result of pollution from oil and other flammable factory wastes – and this wasn’t the first time.

The growing concern of the public, youth activism, and the first Earth Day forced the hand of President Nixon. Previously protection of the environment was spread over several agencies, but mainly the Health, Education, and Welfare Department’s National Air Pollution Control Administration and the Interior Department’s Federal Water Quality Administration. The programs were combined with the creation of a new cabinet department, the Environmental Protection Agency.

Existing laws concerning water were amended and strengthened and became the Clean Water Act of 1972. The act established the basic structure for regulating pollutant discharges into the waters of the United States. And it is not static but rather dynamic, being amended as sound science influenced policy. Changes have met with controversy.

Supreme Court decisions in 2001 and 2006 had left unclear just what the “waters of the United States” mean, so the EPA and Corps of Engineers collaborated on the Clean Water Rule which more clearly defines just what waters will be subject to regulation. The ultimate goal is to protect drinking water. Agricultural, and industrial concerns have called the rule overreach and in fact Attorney General Leslie Rutledge has sued to block the implementation here in Arkansas.

Similarly the Clean Air Act has existed since 1963 but has been amended several times as needed to protect the air we all depend on. Toxic emissions that resulted in acid rain, and levels of heavy metals that can cause nerve damage and especially brain damage (Mercury, Cadmium, Lead) have been lowered in the environment.

The EPA has been studying haze (smog) in National Parks and Wilderness Areas since 1988. In 1999 they began an ambitious program to work with states to clear the air. The haze is due mainly to power plant emissions of fine particulates. The Regional Haze Rule however has been delayed to the point that recently The Sierra Club has sued the EPA for failing to implement a plan in conjunction with the state of Arkansas. [disclosure: I am an officer in the Arkansas Chapter of the Sierra Club]

Another contentious feature of clean air results from Bush’s EPA declaring Carbon Dioxide a pollutant in 2006. Much litigation later, President Obama has sought the Clean Power Plan, meant to reduce CO2 emissions by 32% by 2030. Both the Regional Haze Rule and the Clean Power Plan are being vigorously opposed by our Attorney General as being too costly.

As the population continues to grow, our regulatory structure must meet the demand of more pressure on clean air and clean water. We are the problem, and we have to be the solution.

Mean Coal

To say that every time you flip a light switch, you kill another coal miner would be an outrageous and unsupportable allegation, but we need to think about the costs, in addition to the electric bill, of keeping the lights on.

Close to half of the electricity produced in the U.S. comes from burning coal, and a lot of it. Current use is about a billion tons of coal a year. The costs we pay directly include the actual costs of extraction of the coal, and additional costs tangentially related to coal extraction. The tragic deaths of 29 miners in West Virginia forces us to see these additional costs.

In addition to the deaths from accidents are the more significant but less dramatic deaths from diseases associated with coal mining. Black lung disease is estimated to take 1,000- 3,000 thousand lives per year. Chronic, non-lethal conditions such as related cardiopulmonary diseases affect many, many more miners. If the coal companies pay the health care costs associated with mining, then the cost is added to the price we pay for electricity, but the emotional costs are immeasurable and born by the miners and their families.

We literally have to decide what a life is worth. How much are we willing to spend on our electricity to prevent another death through greater but much more costly safety regulations? Put more bluntly, how many deaths and how much debilitating illness will we tolerate to save money on our electric bill?

Costs which we bear collectively but outside the cost of electricity are more insidious. Severe environmental degradation occurs when mountain top removal strategies are employed to get at coal seams. The tops of mountains are blasted and pushed into surrounding valleys. Acid drainage from various mining techniques can destroy virtually all life in affected watersheds. Emissions from the burning of coal include numerous toxic metals such as mercury, cadmium, lead and arsenic. More radionuclides are released to the environment from burning coal than the total fuel cycle of nuclear reactors. Coal combustion is the major contributor to global warming and and changes in ocean chemistry through acidification.

So the question becomes what do you want to pay for your electricity, in dollars, lives and the environment you leave to our children. The most important thing you can do is examine how much energy you use. You really don’t need kilowatt-hours of electricity. What you want is a warm in the winter, cool in the summer, well-lit house. Or a successful business that meets the customer’s needs.

To a surprising degree, this can be achieved through the utilization of what Amory Lovins calls “negawatts.” That’s the energy you don’t use through efficiency. It’s better than a free lunch, it is a lunch that pays you to eat it! Examples abound: LED light bulbs, attic insulation, shade trees, and clotheslines just to name a few.
Even if we don’t act responsibly, ultimately we will power the world without burning carbon because we will have used up it all up. But we can act responsibly, we can decide that the adoption of a world powered by truly sustainable energy is our best and only future.

 

rare earth elements

Rare Earth Elements

As is the case in so much manufacturing, China is now the world leader in the production of a class of elements known as rare earths. They are not actually rare in terms of relative abundance in the earth’s crust, Cerium for example is about as common as Copper. The rare part of the name comes from the fact that they are difficult to obtain because they generally don’t occur in high concentration deposits as do better known metallic elements such as Iron, Copper, and Nickel.

Where they are found, the ores occur in lower concentrations and because the various rare earth elements have very similar chemical properties, they are difficult to separate. This makes the processing all the more expensive. Seventeen elements constitute the group, the majority of which occur in the Lanthanide Series of elements.

Although they share much of their chemical properties, each has unique uses especially in electronics and other modern high tech products.

One of the more common is Neodymium (Nd, atomic number 60.) It confers hardness and unique optical properties when used in small amounts as a dopant in glass. This glass is then used in the manufacture of certain kinds of lasers. Nd is also used in an alloy for high strength permanent magnets. Neodymium magnets have the advantage of having a high magnetic field strength to weight ratio. Applications include loud speakers, in-ear headphones and computer disks.

Several of the rare earths were first discovered in Ytterby, a small town in Sweden,. Yttrium (Y no. 39), Ytterbium (Yb 70), Erbium (Er 68), and Terbium (Tb 65) all take their name from the same mine

As noted many modern devices utilize rare earths – electronics, magnets, lasers, batteries, and efficient lightning just to name a few. An obvious modern device loaded with rare earths is a hybrid car. About 28 kilograms (~ 62 pounds) of rare earths go into a hybrid car. That is only a small fraction compared to the total weight, but it is a very important fraction.

Another now ubiquitous device, the cell phone, is chock full of rare earths. The glass is harder, and the speakers and memory are lighter, and the vibrating motors stronger – all due the rare earths.

So what’s the big deal about rare earths? The big deal is that currently China controls 97% of the market on these elements which are so important to modern society and even more importantly to a modern military. Our military is dependent on a foreign power for a strategic material. There are exploitable deposits of rare earths in the United States, but are not mined because of costs.

Efforts are being made to bring the cost of mining and processing of the rare earths down which could make our sources more attractive. That said, applying the same techniques to the richer Chinese deposits will make their materials correspondingly cheaper also.

Tar Sands and Energy Returned on Energy Invested

The No. 1 oil exporter to the United Sates is Canada, sending us close to 3 million barrels of oil per day, just under 15 percent of our total imports of oil. This is more than twice as much oil as we get from Saudi Arabia. Much of Canadian oil production, 47 percent, comes from tar sands. Tar sand formations contain a heavy crude oil called bitumen intermingled with sandy soil.

The oil is currently produced by large scale strip mining of the tar sands, which then must be heated with steam to lower the viscosity so that the oil can be separated from the sand. Methods for in situ processing are being developed. Steam and/or solvents are injected into the soil to free the oil for extraction.

Another technique being examined involves injecting oxygen into the tar sand formation and actually burning some of the bitumen to heat the remainder for extraction. The latter two technologies for extraction are more expensive, but lend themselves to obtaining oil too deep for surface mining techniques. After the bitumen is separated from the soil; it still must be processed before it can be sent by pipeline as the native bitumen has a consistency of cold molasses.

Virtually all of the Canadian tar sands production comes from the Athabasca tar sands formation in Northeastern Alberta. This oil supply is available due to the proximity to natural gas which is used to produce heat for extraction and hydrogen production for conversion of the bitumen into a lighter form of crude oil wthat flows through a pipeline. And herein lies one of the problems with production of crude oil from tar sands.

The production of fossil fuels as an energy source is absolutely and completely dependent on the energy returned on energy invested (EROEI). If it takes more energy to obtain a fossil fuel than the fossil fuel delivers on use, then it is not an energy source. It is a waste of energy.

Consider the EROEI of some other fuel sources. In the earlier decades of the 20th century, the EROEI for crude oil in the U.S. was close to 100:1, that is to say one barrel of oil invested in exploration/production produced about 100 barrels of oil. Conventional crude oil today has an EROEI of about 20:1, compared this to EROEI for tar sands of less than 3:1. Paraphrasing a late-night infomercial, BUT WAIT, THERE’S MORE. (the caps are necessary as they always seem to be shouting). Lower EROEIs mean greater amounts of greenhouse gasses emitted for useful energy produced. Fuels such as natural gas have relatively low greenhouse gas emissions compared to conventional crude oil, which has less than coal. The low EROEI means that bitumen processing and use makes it as bad as coal in terms of greenhouse gas emissions.

Finally, massive amounts of water are required to process the tar sands. Roughly 5-10 barrels of potable water are converted to oil fouled waste for each barrel of oil produced. Although there are tar sands in Utah and thereabouts, the resource may never be extracted due to the lack of process water. 



Arkansas and the HVDC Power Line

Plains and Eastern Clean Line has proposed and are planning the construction of a 700 mile High Voltage Direct Current Power line stretching from the Oklahoma Panhandle to Memphis. The 600 kilovolt line will have the capacity to move 3.5 GigaWatts of power, equivalent to the output of 5 or 6 coal fired power plants. This represents a major move to deliver excess clean, wind-generated electricity out of the midwest to markets to the east.

wind turbine blade

wind turbine blade

Similar projects are in progress to our north, the Grain Belt Express Line will be passing through Missouri on the way to St. Louis and points east and the Rock Island Clean Line which will pass through Iowa and tie into several eastern states.

These projects are not so much about the here and now, but rather the there and then. Multimillion dollar projects take long lead times between inception and completion, usually several years, so they have to be planned with the future needs in mind. The recent requirement by the EPA to reduce our nations carbon emissions only hastens our need for clean renewable electrical energy to replace obsolescent coal fired power plants.

The lines have both supporters and detractors. Environmental groups usually favor the projects as a way to reduce carbon emissions and thus reduce the risk of the damaging effects of global warming. On the other side are land owners who see the power lines marching across their land as more big government intrusion into their lifestyles and even interfering with their livelihoods. Additional arguments against construction of the lines are possible health effects, and the fact that the entities proposing the construction are private companies.

It seems strange that an argument against private industry would be made. The United States to a very large degree operates that way, it’s capitalism, right? Rights of way (ROW) must be secured for these power line projects private or otherwise, just as any project in the public interest such as water lines or a railway. Fair market price must be paid for any property taken for the ROW.

Because these are direct current lines they have a relatively small footprint, at most about 200 feet wide.

Monopole_structure

Monopole_structure

The total area utilized by the Plains and Eastern Clean Line is about 8000 acres spread over the total roughly 300 miles in Arkansas. The actual land area taken out of service is much less than that as grazing land and hay fields are essentially undisturbed even within the ROW.

Health effects of the power lines relate to several phenomena – Induced magnetic fields, possible corona discharge, and ion production. There is no convincing evidence based on years of experience with power lines that any of the aforementioned causes have health effects.

The magnetic field induced by the proposed line is about the same as the earth’s magnetic field. A few meters from the edge of the right of way won’t even deflect a compass. Power transmission line operators design equipment to avoid corona discharge as it wastes power. With respect to the ions generated, if you worry about power lines, stay away from beaches and waterfalls as they produce even greater numbers of ions.

In the interest in full disclosure I am a member of the Arkansas Chapter of the Sierra Club which has endorsed the proposed power line.

ozone

Ozone – Stratospheric or Tropospheric

What is the next word you think of if you hear the word ozone? About twenty years ago the answer would invariably have been hole, as in the “ozone hole” over the Antarctic is expanding. Currently if you hear of ozone at all, it is more likely in the form of ozone alerts which occur most commonly on hot summer afternoons in urban environments.

Ozone is another of those Dr. Jekyll, Mr. Hyde molecules. It is at the same time both beneficial and dangerously toxic. It all depends on where it is. Way up in the stratosphere, about 25 kilometers up, it protects us from deadly Ultraviolet rays from the sun, but down near the ground where we breath it is a reactive substance which damages lungs and exacerbates asthma and cardiovascular disease.

There is fairly good evidence for life arising on this planet over 3.5 billion years ago. One hypothesis is that life formed in the seas, as life on the surface of the planet was impossible due to the intense deadly Ultraviolet (UV) rays striking earth. A few billion years later and following the evolution of the chloroplast, oxygen (O2) began to accumulate in the atmosphere. In a cyclic process in the upper atmosphere the more abundant O2 is turned into Ozone (O3). This tiny bit of Ozone absorbs the dangerous UV rays and makes life possible on the surface.

Life then climbed out of the primordial soup and started building air conditioners, refrigerators, and the like which require a refrigerant to work. Compounds know as Chlorofluorocarbons (CFCs) were chosen because they were effective, non toxic and relatively stable. Bear with me here, I’ll get back to Ozone quickly.

Ozone hole over Antarctica

Ozone hole over Antarctica

It’s the stable part got that gets us in trouble. When CFCs escape the refrigerator or air conditioner, they get in the atmosphere. They are stable enough to get all the way up to the Ozone layer without falling apart. There a combination of reactions destroys the Ozone. Enough could literally wipe out life on the planet. Even small amounts of Ozone destruction lead to an increase in retinal damage and skin cancer.

And that is the story of the Ozone hole, a climatically related figure of speech referring to a lessening of the total amount of Ozone in the stratosphere. Luckily we figured this out and by an international agreement known as the Montreal Accords agreed to ban the production and use of these substances. The Ozone hole is slowly shrinking and is by about 2050 expected to be completely healed.

Now back to ground level Ozone, the Ozone we don’t want. Ozone formation at ground level where we breath is not natural. The the fault here is internal combustion engines – Cars and trucks and buses that run of gasoline or diesel.

US-ozone-non-attainment-2007-06

US-ozone-non-attainment-2007-06

Because engines aren’t 100 per cent efficient, some uncombusted gases escape the tail pipe. Known as volatile organic carbon (VOCs), they react with Oxygen and sunlight to produce Ozone. Luckily Ozone is unstable and degrades rapidly so if it forms in the afternoon, it is gone by the evening. Toxic ground level Ozone can be controlled by reducing the production of the VOCs. Reducing the number of cars in urban environments through mass transportation is a very effective measure. Alternately reformulating fuels to produce less VOCs works to some degree, but raises the cost. Natural gas fueled vehicles produce less VOCs and electric vehicles none.