Category Archives: Sustainable Energy

State Support for Sustainable Energy

The data are in and the numbers are crunched. 2015 is officially the hottest year for the planet in recorded history. Last year raced past the previous hottest year, 2014. In fact the 10 hottest years on record have occurred since 1998.

The science is clear, the heating is due in the main to burning fossil fuels. Governments around the world are developing strategies to decarbonize their economies. Here in the United States we have federal various tax credits which lower the cost for both individuals and businesses to be less reliant on fossil fuel combustion. Purchase tax credits are available for energy efficiency and sustainable energy production. Also, production tax credits for wind produced energy are available.

Variable levels of subsidization from the states for both purchase and production of sustainable energy is also available. These can come as purchase savings: income tax credits, income tax deductions, sales tax rebates, and cash rebates. Production of sustainable energy, for example solar photovoltaic systems or wind turbines are subsidized by feed-in tariffs or net metering. Levels of support also vary by sector such as homeowners, coops, or for profit businesses.

California is generally recognized as the nation’s leader in clean renewable energy because they have committed to a renewable portfolio of 50% by 2030. This means they expect 50% of energy production in the state to come from renewable energy. Their success thus far is driven by a combination of all the above, credits for efficiency, the purchase of equipment, and for energy produced.

An example of a production subsidy is a feed-in tariff. This is a rate structure for electricity where the producer of clean energy, say a homeowner with solar panels, signs a long term contract to produce energy to the grid at a premium price. In Michigan the average cost of electricity is about 11 cents a kilowatt hour (kWh). Producers with a feed-in tariff are paid 24 cents a kWh. Payback times at this rate could be less than five years!

Here in Arkansas we are about in the middle of the pack, renewable energy support-wise. There is essentially no state purchase support, but net metering provides some assistance for the production of clean, carbon free energy. Net metered systems in Arkansas use bidirectional meters. When the sun shines and production is in excess of consumption the meter runs backwards, at the same rate as it runs forwards when consuming energy. There no additional access charge or fee for net metered systems. What this means is that the home producer is paid retail cost for the power sent to the grid.

Less valuable but still of some help are net metered systems where the producer is only paid the power company’s avoided cost, the wholesale rate. This doesn’t reward the expense of providing clean power to the grid as the avoided cost is the cost of the oldest, cheapest, and usually coal fired power production. Nevada recently downgraded their net metered systems to pay only the wholesale price for production, rather than the retail price.

Only two states, Tennessee and South Dakota, have no production support for distributed clean energy.

Solar Based Solar Energy

A major drawback of most if not all sustainable sources of energy is the matter of intermittency. Power can’t be generated by wind turbines if the wind doesn’t blow, and solar panels don’t generate power when the sun doesn’t shine.

There are three ways to deal with this. One is to simply expect to use power when it is available. This is impractical for homes or hospitals or industries where power is necessary 24/7, but it is conceivable that certain industries could run their industrial processes when power is available. Sources such as wind and solar are intermittent, but reliably so. A major problem with this strategy is that expensive equipment can’t be used for sizable amounts of time, making the industry less efficient and therefore less competitive.

The obvious solution is energy storage for leveling the availability of power, and there are a number of different strategies. Pairing energy sources to level access to power may be possible in some cases. In some areas the wind blows more at night. This could be combined with daytime solar PV. Actually this is already occurring to some degree via our electrical grid that utilizes both wind and solar inputs.

The holy grail of sustainable but intermittent energy is inexpensive grid scale battery storage. This is a major forefront of sustainable energy research today. Some Japanese researchers are taking another tack however. What if you could find a place to put solar panels where the sun always shines, with no shadows or clouds, just sunlight 24/7. No problem, just head out into space about 20,000 miles. Solar panels are already hard at work powering hundreds, even thousands of satellites and of course the international space station.

The Japan Aerospace Exploration Agency (JAXA) has a 25 year plan to develop gigawatt scale solar panels in space and then beam that energy back to earth. For perspective the average nuclear power plant produces a little less than a gigawatt. The two reactors at Arkansas Nuclear one combined output is about 1.8 Gigawatts.

This will be a BIG project. To produce that kind of power requires an array of solar panels that weigh on the order of 10,000 tonnes and covers an area of a couple square miles, but this is the easy part. Getting that power back to earth is the really tricky part of the plan. The idea is to beam the power back from space via microwaves. Satellites in geosynchronous orbit would point a sending device towards an earthbound antenna which would absorb the microwave power, then convert it to electrical energy that could be sent to grid along with all the other energy sources.

We use microwave ovens to heat up cold cup of coffee, but in this application the power is sent only a few inches, not tens of thousands of miles. Microwaves are sent long distances in the form of radar, but the relative power level is extremely low. To beam relevant amounts of power tens of thousands of miles is the real challenge.

So far testing has only involved sending kilowatts of energy over a fraction of that distance. Stay tuned.

RIP David Bowie 1947-2016

pv2

Alternative Energy Alternatives

So you want to be green, or at least greener, when it comes to your electricity use. There are a welter of options available. Here in Arkansas we are not blessed with sufficient wind resources to make homeowner wind very cost effective, so going green means solar photovoltaic systems (solar PV) are the best game going. But with this restriction there are still several different approaches to decarbonize your electricity.

In remote areas without grid connections, the only reasonable green electricity is with a solar PV system and batteries. The batteries are necessary not only to tide you over for when the sun doesn’t shine but also to stabilize the power to your home or cabin. Imagine on an otherwise sunny day a solar array is providing nicely for the home, but a cloud passes over. This would temporarily reduce the current, possibly to the point of damaging electronics, Hence batteries are essential. Just how many batteries needed is a function of how long will the sun not keep up with demand. On occasion in this area we can go for a week or two without much sun due to rain and clouds. The point is that this is the most expensive option due to the costs associated with the batteries.

Much more practical are so called “grid tied” solar arrays which essentially use the electrical grid as a battery. If you buy electricity from Entergy, SWEPCO, or AVEC for example, and you add solar panels to your home, the power company is your battery. When the sun shines your meter will slow down or actually run backwards sending power to the grid. At night or on rainy or cloudy days power is drawn back from the grid. Because Arkansas is a net metering state, when producing you are paid the same price as when you buy. Depending on how many panels you have you can replace some or all of your electrical needs. Currently costs are such that the payback period is about half the rated lifetime of the panels. You will recoup your initial investment in about a dozen years, and the panels will continue to produce for at least that many years to come.

All homes don’t have access to the southern sky on their property due to shading from trees or the terrain. That said you can still participate via community solar farms. The first community solar farm has begun near Little Rock. A developer is constructing a solar farm tied to Entergy’s grid. Any Entergy customer can basically buy a piece of the solar production. The buyer has their own meter which is aggregated with their home meter, just as if the solar panels were on their roof. Entergy deducts any power costs produced by the solar panels from the power costs at the home. The cost for this approach is somewhat higher as because of the costs for site development and land acquisition.

Yet one more option exists to green up your electricity. The green power costs for the aforementioned approaches all require some significant start up costs. Another alternative is to buy “green tickets” or participate in the purchase of Renewable Energy Credits. There are companies that will for a nominal charge on top of your actual electric bill, buy green energy. The additional charge is used to buy power from green sources and send that electricity to the grid, which offsets electricity from fossil fueled sources. Basically you are subsidizing clean energy. You don’t own any equipment but your dollars go to green the environment.

Energy Subsidies

A significant argument against sustainable energy supplies such as wind and solar is that they are not cost competitive with fossil fuels without significant subsidies in the form of tax breaks. It is true that there are various subsidies that favor clean energy. Wind energy producers get a production tax credit and purchasers of solar energy production equipment get a purchase tax credit. There are even purchase credits for buying hybrid vehicles because of their greater energy efficiency.

The argument of course is that sustainable energy sources are the future and giving them a leg up with the competition moves us more in the direction of where we know the future is. Of equal importance is that these clean energy sources don’t contribute to the release of pollutants that impact our health and the stability of the planet’s climate.

If a level playing field is desired however, consideration must be made of the subsidies afforded the fossil fuel industries. And they are significant. Tax deductions abound.

Tax deductions to the oil and gas industry are given to lower the cost of intangible drilling costs. These deductions are for the costs associated with the development of the drilling site. The costs cannot be recovered if the well produces no oil or gas. The purpose was to lower the risk to investors and constitutes a considerable subsidy to wildcatters. Basically the tax payers take the risk but the oil and gas companies take the profits.

The depletion allowance is an especially sweet deal. It is a tax deduction based on the idea that exploiting a finite resource is costly because it goes away. The more successful one is at production, the less one has left to produce. This subsidizes the oil, gas, and coal industries by hastening the exploitation of limited resources. Tax payers assist the industry in profiting from exploiting a resource. Keep in mind that there is no depletion associated with extraction of energy from wind and solar resources.

Tax deductions for accelerated write-off of the expenses are afforded to the oil and gas industries, with respect to the costs of exploration for these resources. Tax payer money is used to assist these industries to find the resources from which they profit.

The arguments in favor of this corporate socialism is that if we lower the costs of exploration for and production of the energy sources, then we all benefit from lower costs; that is, the purchase prices for the fuels. This is more of the old trickle down economics.

The subsidies cited above are for tangible, direct costs. There are other costs born by taxpayers known as externalities. These include but are not limited to health care costs to individuals, insurers, and federal and state programs to help ameliorate these health costs. There also are indirect costs born by taxpayers for environmental degradation. Abandoned coal mines and spoils, polluted drill sites, and structural damage due to hydraulic fracturing all create costs born by tax payers. Finally there are near incalculable costs due to global climate change.

If we are to remove subsidies from clean, sustainable energy sources we need to do the same for those non-renewable, dirty industries. Then and only then will we truly level the playing field.

World Wide Wind

We will at some point cease to produce electrical energy by burning fossil fuels, either (sooner) because we realize the harmful effects of using the atmosphere as a toilet, or (later) because we simply use them all up. These fuels can be replaced with sustainable sources, principally wind and solar. Where are we now and where are we going?

In the United States we currently get 13 per cent of our electrical power from renewables. The majority of that from hydropower, followed by wind biomass and solar power as a distant fourth. There seems to be limited potential for growth in hydropower or biomass but the sky the limit for wind and solar, assuming that the issue of intermittency can be overcome.

Although we have no national policy for the country, president Obama has mandated that the federal government get 20% of its electrical energy from renewables by 2020. Various states have renewable portfolios that range from trivial to ambitious: The old south, a couple of coal states in the Appalachians, a few midwest to rocky mountain states have none. Hawaii has the most ambitious, with a target of 40% by 2030.

Internationally, it’s a mixed bag. Mountainous Costa Rica, with a population of about 5 million, gets from 90 to 100% of its electrical energy from renewables, mainly hydro and geothermal. Similarly Norway with twice the population of Costa Rica produces very close to 100% of their electric power from hydropower plants.

Because of availability of cheap electric power they have developed energy intensive industries such as the production high grade Silicon for solar cells. Interestingly a focus of World War II was on Norway. Germany invaded Norway to gain access to energy intensive production of heavy water for their experimental nuclear reactor program.

The real potential for expansion of renewable power is in the wind, especially in countries with lots of coastline. At one point last week, Denmark was producing 140 % of its electrical energy, exporting the excess to Sweden and Germany. Their current average wind produced electricity is approaching 40%, and they are still building out.

Germany is an interesting study. They have a vigorous low carbon energy transition plan (Energiewende.) Their target is an astounding 80% renewable by 2050! They are currently installing wind and solar PV faster than anybody on the planet. Currently they are around 27% with very little hydropower, twice the US average.

The biggest player of course is China. They are the current world leader in carbon emissions, having surpassed the US a few years ago. China’s air pollution problems are legendary. Smog from from eastern China can be tracked across the pacific to our west coast. They recognize they have a problem and are aggressively addressing it by moving away from fossil fuels and toward efficiency and renewables. In 2014 they installed three quarters of the new solar capacity on the planet.

tesla battery

Batteries for the Future – Now

A recent Op-Ed in the New York Times (about food) gave a hat tip to the Sierra Club and their Beyond Coal campaign – an effort to close all coal fired power plants by 2030. The point of the piece was the necessity of activism and organizing around a particular issue.

Since the inception of the program in 2010, no new coal plants have been built and 188 closed or planned to close in the near term. Currently just of under 40% of the electric generation capacity in the United States comes from burning coal, but the number is falling – replaced by natural gas plants and a mix of wind and solar.

As long as intermittent energy, wind and solar, constitute a small fraction of the total electric supply, grid operators can balance the load as needed by reducing power from the coal plants. But what about when the coal plants are gone? What do we do when the sun isn’t shining or the wind isn’t blowing?

There is no doubt that there is enough solar in the Southwestern US or wind the Midwest to power the nation, but storage and transmission is a controlling factor to the use of these clean sources of energy. Tea party types are resisting transmission lines on the basis of property rights and governments in conservative states are making small scale renewable energy less attractive to protect their power companies’ turf.

When one thinks of energy storage, explicitly electrical energy, batteries are it. Enter Elon Musk, billionaire entrepreneur and builder of the Tesla Electric car. More important than the electric car are the batteries that power them, at least that is what Mr. Musk thinks. He has recently gone into the battery market, not only for his cars, but for stationary applications. He introduced a 10 kWh battery that can be used for a myriad of applications.

For a home owner this means “behind the meter” storage. Obviously off the grid folks rely on batteries but even grid-tied homes can utilize storage for weathering storms when the grid goes down. Folks with grid-tied renewable energy systems can utilize storage. Some power companies have time of use metering, that is the cost of power varies as to when it is used. If a home owner has a storage capacity, S/he can chose to sell power back to the grid when the price is higher. Even without a renewable energy supply, home owners with storage can charge batteries during the night when rates are lower, then sell power back to the grid during the day, making a profit in the exchange.

Utility scale storage can be beneficial right now. Battery storage can be added incrementally to defer transmission and distribution line upgrades as demand grows. Batteries can be used to back up temporary shortages due to short term power plant outages. Not to get too far down in the weeds on these issues, suffice it to say the Batteries will play a huge part in the future of clean energy supplies.

This something we should all strive for. We will get away from burning stuff for power, and batteries will make this more practical.

Sustainability and Jobs

Our new attorney general, Leslie Rutledge, was off to Washington recently to testify against the EPA clean power plan. As part of the plan Arkansas will be required to reduce our carbon emissions by 44 % over the coming decades. This will be achieved by burning less coal, thus cleaning the air and reducing climate forcing. From her press release:

“Arkansas is uniquely positioned on this topic because of our rich natural heritage. In the Natural State, we place a high value on clean air and clean water as we protect our state for future generations, and as Attorney General, I will not sit idly by while this administration pushes policy objectives that will ultimately hurt job growth and Arkansas’s ability to compete across the country and the globe.”

Installing solar panels

Installing solar panels

It is odd that she opposes a plan which will do exactly what she favors; that is, clean the air and water and protect our state for future generations. One can only assume from her statement that she thinks that we will have fewer jobs and be less competitive by burning less coal. But is that the case?

If one assumes that much of the energy not produced by by burning coal is replaced by sustainable energy sources such as wind and solar, what is the tradeoff on jobs? Or how about jobs created by avoiding the need for energy in the first place? How many jobs are there in becoming more efficient?

wind turbine blade

wind turbine blade

There are currently about 174,000 jobs in the coal industry including mining, transportation and power plant work. Compare that to about 172,000 jobs in the solar industry – fabrication, sales, installation and maintenance. An important comparison is the jobs per power produced. The solar power in the United States represents only 0.7 % of installed capacity where as coal power is at about 40 %. If we divide jobs by installed capacity, solar wins hands down – about 10 times as many jobs in solar compared to coal when capacity factor is considered.

The comparison for wind and jobs is similar. There are about 100,000 jobs in wind, and with about 6 % of the capacity, wind produces 5 times as many jobs as coal. Both wind and solar are expanding rapidly, where as coal jobs are declining.
It is difficult to calculate the number of jobs in efficiency which replaces energy production. That said, efficiency is estimated to produce about 4 times as many jobs to avoid burning coal as coal jobs.

It seems fairly clear that renewable energy and efficiency produce 4 to 10 times as many jobs as coal. If our attorney general is concerned about jobs she should have gone to the house hearing to endorse the clean power plan, rather than oppose it.

One final factor should be mentioned. There are no fuel costs for renewables and efficiency, but Arkansans pay in excess of 650 million dollars a year to import coal from Wyoming. Renewables such as solar and wind would keep those millions of dollars here. That’s money which will remain in the Arkansas economy and make us more, not less competitive.

earth

A Positive Potpourri

So much news about global warming and climate change is negative. The planet’s hotter, the weather weirder, and the future dimmer. Whereas over half of Americans believe in global warming, less than half care. But there is some hope for the future out there.

Little is coming out of congress but the state of California is leading the way to a sustainable future. The land of “fruits and nuts,” the land where the leader is referred to as “Governor Moonbeam,” will be breaking ground for a new high speed rail to run from San Jose to Los Angeles. The nation’s largest infrastructure project will cost billions but take scads of cars off the highways and planes from the sky. It will produce jobs that can’t be sent overseas, and most importantly reduce the carbon footprint for the people of California.

And speaking of a carbon footprint, Governor Jerry Brown has set an ambitious goal of 50 % of the energy to come from clean sustainable sources such as wind, solar and geothermal by 2030. Nowhere else in the country is there such an ambitious standard.

The Journal of Environmental Studies and Sciences show that the cost of onshore wind and solar PV are cheaper than coal for generating electricity, when the cost of climate forcing is factored into the use of fossil fuels, either gas or coal. The cost of solar panels alone has dropped by 50% between 2008 and 2009. Although Solar PV generated electricity only accounts of a scant 0.7 % of installed capacity, it recently has become the the most rapidly installed new generation in the country.

The oil and gas boom due to technological advances like shale fracking have accounted for a 10% reduction in oil imports (equivalent). That’s good but automotive efficiency due to gas mileage standards coupled with increase utilization of mass transit has resulted in nearly twice the savings, some 18% reduction. Reductions due to efficiency are far too often overlooked when considering reducing our reliance on fossil fuels.

An important aspect of sustainable energy is the fact that it creates jobs, more than any of the fossil fuel industries. The US Bureau of Labor Statistics estimates that there are about 80,000 jobs in the coal mining industry, but over a 142,00 jobs in solar industries.

Several HVDC transmissions are moving through regulatory approval, including the Plains and Clean Line which will pass through Pope county. When approved and constructed, they will allow the utilization of much otherwise stranded electric generating capacity from abundant midwestern wind.

Also here in Arkansas, a 12 megawatt (MW) solar photovoltaic installation will be built on a one hundred acre site in an industrial park in East Camden. Arkansas Electric Cooperative Corporation (AECC) will sell power to their members across Arkansas. AECC has also agreed to purchase an additional 150 MW for a total of 201 MW of wind power from producers in Oklahoma. An 80 MW wind turbine farm has been proposed for a site near Springdale. It will use a novel shrouded turbine design which is claimed to completely eliminate bird and bat mortality.

wind-farm

Opposition to Transmission Line

Pope County Quorum Court opposes clean air, stable climate!

Recently the quorum court voted unanimously to oppose the construction of Plains and Clean Line’s High Voltage Direct Current transmission line. The HVDC line has been proposed to run from Guymon, Oklahoma to Memphis, Tennessee. If built it will move 3,500 MegaWatts of wind generated electricity from the Midwest to Arkansas and the Tennessee Valley Authority (TVA) power grids.

The resolution reads in part “If this power line is built, it will be an enduring eyesore to Arkansas and Pope County, affecting the natural beauty of this area and damaging property values with little positive effect…”

This proposed transmission line is an eyesore compared to what? The welter of transmission lines emanating from Arkansas Nuclear One? Or would it be an eyesore compared to the transmission lines coming from the powerhouse at the Lake Dardanelle Dam. Maybe it is an eyesore compared to the transmission line running from the half a dozen or so other power plants in Arkansas.

Power lines, be they large transmission lines or the smaller distribution lines are a fact of life. Literally hundreds of miles of transmission and distributions lines, owned by both private (Entergy) and co-op (Arkansas Valley Electric) corporations, criss-cross the county already.

It has been suggested that we could free ourselves of these and future electric grid improvement “eyesores” by the utilization of underground cables. That is certainly an option, but a very expensive one. Installation costs for underground transmission lines can be 8 to 10 times that of overhead lines. Although buried cables are less likely to fail due to weather events for example, when they do fail repair times are greatly extended. Repairing or replacing buried cables can require days or weeks rather than hours.

Another option would be distributed electrical energy sources such as roof-top solar PV to avoid the need for large transmission lines but even here there is a need for a wide area distribution grid. Roof-top solar is also much more expensive than utility scale wind power. Many states including Arkansas, are enacting legislation to make roof top solar even more expensive.

Another point in the quorum court resolution is that the line will provide “little positive benefit.” People that appreciate clean air and a more stable climate might quibble with the little part of the resolution. The proposed line will carry the power equivalent of five or six coal fired boilers. That could mean millions of tons of coal not burned every year. Just for perspective, those interminably long coal trains that snarl traffic as they pass through Russellville carry tens of thousands of tons of coal every day from Wyoming strip mines to one power plant in Redfield Arkansas.

The real irony of the quorum court vote is the simple fact that each and everyone of the JPs gets electricity to his or her home via the grid. That means many folks “upstream” have to suffer eyesores and devaluation of their property to keep the lights and big screen TVs powered up in the JPs’ homes. A similar resolution was passed by the Johnson County Quorum Court. Hypocrisy much?

US Oil Booms, But

About 2013, for the first time in over 20 years, the gap between our consumption and production began narrowing, rather than widening.  There are two reasons for this. Production is up due to the fracking boom and of equal importance consumption is down due to the poor economy.  That is good as a snapshot but means little for the future.

As the economy slowly recovers our usage will rise.   At the same time the fracking boom has a limited lifetime. A University of Texas study showed that production of natural gas from three of the largest shale plays; Fayetteville, Haynesville, and Barnett have already peaked. Similar performance is expected in oil from shale fracking. In a few short years we should be back on our inevitible decline in production. Without reduction in consumption we will resume an upward trend on importing oil, currently about a third of what we use.

The danger is fourfold: exporting dollars to buy energy weakens our economy, enriches the economy of some unsavory producers such as Iran and Russia, threatens a stable environment, and impairs our health.

To a large degree all transportation and big chunk of the U.S. Economy is powered from crude oil. The oil is turned into gasoline, diesel fuel, jet fuel, heating oil and a myriad of derivative products such as plastic. Currently we are consuming about 18 million barrels of oil per day, yet we only produce about 12 million. That constitutes an energy deficit of about 7 million barrels of oil per day. Even with the price falling to near 50 dollars a bbl, this creates a trade deficit of over an eigth of a trillion dollars a year. An eigth of a trillion dollars a year that flies out of our economy on an annual basis. An eigth of a trillion dollars that is not flipped in our economy to provide jobs or buy groceries.

The oil comes from friendly and not so friendly countries. Canada is our number one supplier, some might say “pusher” at about two and a half million barrels per day. The members of OPEC, the Organization of Petroleum Exporting Countries, provide about 5 million barrels of oil per day. Iran is a charter member of OPEC and benefits greatly if indirectly from our purchase of oil on the global market. This is not a pretty picture – our dollars going to support a rogue theocracy bent on developing nuclear weapons and their support for global terrorism. Although we are currently a net exporter of natural gas, this won’t last when the shale plays are exhausted.

We even import uranium to fuel nuclear reactors. The import export balance is negative to the tune of several billion dollars a year. Generally we import low grade Uranium ore and export enriched nuclear fuel. Regardless we are operating at a net dollar loss.

The only fuel that we don’t have to import is coal; however, as society becomes more aware of the risks of damage to human health and the environment, it will become less useful in our economy.

There is no easy answer to this bleeding of cash from our economy. We will not drill our way out of the problem because the oil and gas are just not here. We must adopt energy from clean indigenous sources as the only long term, sustainable answer. The bonus for home produced sustainable energy is the money stays home and cascades through the economy.