Tag Archives: alternative energy

Property Assessed Clean Energy Act

Whether you personally are or are not concerned with global warming, you should be interested in saving money. Many steps taken to mitigate climate change such as sustainable energy supplies and energy efficiency save money. The Trump administration refuses to acknowledge the risk of global warming and subsequent climate change, indicated by his refusal to join the rest of the world in the Paris Accords. Regardless, cities, states, schools and universities, even businesses across the country do get it and are acting to honor the goals of the agreement.

Assuming Arkansas is like the rest of the United States, about half of all the energy and three-quarters of the electrical energy used goes into buildings. Acts, ordinances, etc. which lead to increased utilization of non-carbon energy sources can go a long way to save energy, lower costs, and lessen the use of fossil fuels which drive global warming.  Act 1074 of 2013, called the Property Assessed Clean Energy act or PACE is a program that allows a person or business to finance energy projects through the inclusion of the costs in a property tax assessment.

The act enables governments such as cities, counties or combinations thereof to form Energy Districts which organize financing for projects. Fayetteville, (later joined by Springdale,) and North Little Rock have active programs. A property owner/business identifies a project that will save energy or water or create clean renewable energy. The improvement district then arranges the financing for the project. This can be done with bonds or a variety of private financing. The property owner repays the loan through a property tax assessment over a defined period of time.

A number of energy efficiency projects come to mind: Increased insulation, more efficient window windows with low-E glass, solar hot water systems, projects which reduce water consumption, more efficient heating and cooling systems such as ground source heat pumps. Projects which actually produce clean energy are also funded: photovoltaic panels, micro-hydro projects, wind turbines and biomass energy are all included.

Here is an example of how it could work. A property owner with an older structure decides to upgrade the HVAC, insulate the walls and attic, and replace the windows. The total cost of the project is 10,000 dollars. She goes the Energy Improvement district and receives 100 percent financing. The cost is repaid over ten years through a property tax assessment. Generally, the savings in utility costs will cover or even exceed the annual fee. If she sells her structure before ten years the buyer assumes the assessment, just as they assume the energy savings from the energy improvement.

PACE benefits the local community by creating a cleaner, greener environment. Local businesses that supply the equipment will see increased sales. Installers will have more work and create jobs for skilled tradesmen and unskilled labor alike.

Such a program is easily within the reach of Russellville, and other cities which may choose to join the program. The City of Fayetteville created the model ordinance used by the aforementioned cities. Were the program adopted county-wide many farmers or other rural businesses and homes could benefit from energy saving/production.

The best way to save money and the environment comes through energy efficiency. Reduced use of electricity means lower costs but also less burning of coal and natural gas. This is a win, win, win situation. The adoption of ordinance to create an energy district will save the property owners money, create business opportunities and jobs for the community, clean the air, and cool the planet. What’s not to like?

PV Primer, 2017

The cost of photovoltaic systems (panels and inverter) has dropped to about 1 to 2 dollars per watt. At this price, including the 30 % federal tax credit, systems have payback times in less than 7 years, regardless of size. This assumes a cost of about 10 cents a kilowatt hour (kW-hr) for electricity.

Here are a number of nuts and bolts issues for those interested in solar power. First and foremost you must have a location with southern exposure. Even a small amount of shade can seriously reduce energy production. For most this means a roof top location, but it needn’t be if you have the space to put the array on the ground. The simplest mounting puts the panels flat on the roof. The pitch of the roof is not all that important as long as it faces south.

The amount of space needed for an array of course varies as to how much total power you want to produce. Different manufacturers make panels in different sizes (watts) but the total space needed is the same because all PV panels have the same efficiency, about 15 %. Five 100 watt panels will take up the same space as one 500 watt panel. One kW requires about 80 square feet of space.

A big decision is whether the array is isolated or connected to the electrical grid. Grid-tied systems here in Arkansas can take advantage of net metering. This means that the power produced by the panels can actually make a meter run backwards if they are producing more power than the home is consuming at any time. About the only disadvantage of a grid-tied system is that when the line goes down, so does the solar power production. This is necessary to protect power line workers.

The alternative to grid-tied is to go entirely off line by buffering production with batteries. This avoids the aforementioned problem, but greatly increases the cost and “hassle factor” of the system. This is only practical when connection to the grid is cost prohibitive, as in remote locations.

The total amount of energy produced by a system is obtained by the total wattage of a system. For example a 1 kilowatt system can produce a maximum of one kilowatt hour only when the sun angle is ideal. Averaged over a year, a simple rule of thumb is that you can get 4 hours of net production per day. Hence a 1 kW system can be expected to produce 4 kW-hrs per day, more some days, less others.

Let’s use an average consumption of 1000 kW-hrs per month (close to the average in Arkansas) to determined a system sized to replace 100 % of electric needs. 1000 kW-hrs per month means 33 kw-hrs per day. Divide that by 4 to get a a little over 8 kW system. To allow for some inefficiencies say we use a 9 kW system. At 1.5 dollars a watt, the total cost would be 13,500 $. The 30% federal tax rebate brings the final cost down to 9,450 $. Sales taxes and installation will add to the cost, but these numbers can be used to approximate a cost if you are interested in going solar.

Human Energy, Embodied Energy

Humans, as just about all living thing, have a capacity to do work. By subtracting the energy we need for basal metabolism from total caloric intake we get a measure of useful work. For an average American, we do about 500-1000 kilocalories of work daily. Converted to kilowatt-hours (kWh) it’s only 1.2 kWh.

We consume vast amounts of additional energy in the form of electricity and gasoline to name just two, and the indirect energy embodied in the goods and services we use in modern society. If we add it all up and convert it to a single unit, it comes to 220 kWh per day. It is as if we all employ over 200 slaves a day! How in the world did we get here?

One place to begin is with human control of fire. There is clear evidence of the control of fire 200 to 300 thousand years ago, which roughly corresponds with modern humans, Homo sapiens. However there is growing evidence of the use of fire goes as far back as a million years ago. Not only did fire provide warmth and protection but also increased nutrition.

Only a slight step up from burning wood was the use of charcoal. This was important for the advancement of the various metal ages. Copper and Tin were ores easily smelted using charcoal which provided both an energy source and a chemical reactant for making metals. The bronze age, bronze being made principally from Copper and Tin, dates to the dawn of civilization – about 6000 BCE, 8000 years ago. This begins the use of embodied energy, rather than direct energy use.

The next step was a giant one, the identification of fossil fuels as energy sources. The demarcation of modern life begins with the industrial revolution around 18th to 19th centuries. This is the age of coal and iron and mechanization. The steam engine powered by coal not only revolutionized manufacturing but also transportation via steam trains and ships.

The beginning of the age of oil is usually connected to Edwin Drake’s oil well near Titusville, PA. Crude oil and its refined products rapidly displaced other energy sources because of convenience. Our success in World War II was due in large part to our exploitation of fossil fuels for manufacturing and transportation.

World War II also ushered in the atomic age, first with bombs, then “atoms for peace.” The first civilian nuclear reactor in the US (the first in the world was in the Soviet Union) was in Shippingport, PA in 1958.

As our consumption of crude oil continued to increase, by 1969 our ability to produce oil peaked. Shortly thereafter the Organization of Petroleum States formed, began an embargo, and caused the US to realize that in terms of energy we are not be the masters of our fate.

Loss of control of the oil market, coupled with the increasing recognition of the harmful effects of the burning of fossil fuels ushered in the beginning of renewable, or better described sustainable energy sources, notably wind and solar.

Booming Solar

­

Sustainable energy is currently the most rapidly expanding form of energy in the United States. The same is true here in Arkansas. Whereas we are not well set for wind as our neighbors are to the west, solar panels (PV) that generate electricity are effective, and getting cheaper by the day. Solar arrays now cost less than half of what they cost just 10 years ago.

The price is now so low as to be competitive with more conventional power sources such as coal and natural gas, and infinitely cleaner. Current solar capacity (as of 2015) is 20.1 megawatts (MW.) This is an unbelievable 640 % increase over all PV power installed up through 2014. The new power installed in 2015 is dominated by utility scale power, 15.4 MW. Commercial industries and businesses installed 0.24 MW and the residential sector 0.46 MW. This represents a 56 million dollar investment in clean energy and jobs.

Solar power has come of age, not just for people wanting a little power for an off-grid cabin in the woods, but residents tied to the grid, industries, and especially power companies. One real advantage of solar power is its scalability. If a power company needs to expand their energy supply a small amount, they can add a small solar field. If they need a lot of power, they install a bigger field. No alternative has this scalability. You just can’t build a (cost effective) small coal or nuclear plant. Not even natural gas fired turbines are as scalable.

The L’Oreal plant in North Little Rock will install several thousand PV panels, about 1 MW’s worth. In March 2016 a private-public consortium consisting of two Arkansas Electric Cooperative Corporations, and Aerojet Rocketdyne will install a 12 MW solar field near East Camden. The largest install this year will be an 81 MW solar farm to be installed by Entergy near Stuttgart.

Generally installs of home solar arrays are booming also. Most cost effective for the consumer is a grid-tied net metered array. This system allows the home owner to remain connected to the grid in addition to the solar panels. When the sun shines the panels provide energy to the house, but when the sun is not shining, the home can draw power from the grid just like any other home.

PV systems can be sized to provide all or any fraction of the power needed for the home. If a particular array actually produces more energy than can be consumed in a given month, the law allows the excess to be carried over to a month when energy is needed.

The consumers gain is however the power companies loss, and they don’t like it. They lose profits by not selling as much electricity and even worse net metering threatens the vertically integrated structure of the business. They are the power generators, the wholesalers, the distributors and the retailers, and they want to keep it that way. Other states, notably Arizona and Oklahoma, have instituted additional fees for home solar which will severely limit the development of truly distributed clean energy.

The Public Service Commission here in Arkansas is empowered by law to set rates and rate structures of electric utilities. Over the next year they will be conducting studies to determine if changes are needed (read additional costs to home solar users.) The utilities will be arguing that they have to claw back their profits to remain in business. Stay tuned.

Wood as Fuel

DSC00456

The capture and control of fire is right up near the top when one considers technology and human evolution. Whether simply warming the hearth, defending a home place from wild animals or cooking food, fire is a most essential ingredient. Estimates are that an ancestral species Homo erectus learned to control fire ½ a million years ago, and some scholars believe as early as 1.7 million years ago.

Wood fueled the production of the various metal ages up to and including the iron age. Wood was still the dominant fuel used in blast furnaces in early 19th century England. In fact it was the shortage of wood for the furnaces that stimulated the development of the use of coal. Forests were gradually cleared farther and farther from the furnaces until transportation costs made hauling the wood impractical.

Wood, straw, dung, etc are still major fuels in the underdeveloped world. Worldwide wood is the fourth largest source of fuel after the fossil fuels – coal, oil, and natural gas. Wood and derived products like charcoal are about one third of all fuel use in Africa and over half in Oceania.

Industrial fuel wood use in the United States is limited. Certain industries that produce significant amounts waste wood can burn it to produce steam for process heat or to drive turbines.

The amount of heat derived from burning wood varies as the density of the wood with hardwoods such as oak and hickory having the highest fuel values. At the other end of the scale are softwoods such as pine. This is only true where the wood is measured by volume such as a cord (a stack of wood 4 feet by 4 feet by 8 feet- 128 cubic feet.)

When measured by mass all wood has about the same fuel value which is the same as the fuel value of carbohydrates like sugar or potatoes. A toothpick and a piece of spaghetti of the same weight will produce the same amount of heat when burned.

In rural areas where available, wood is used for space heat. It may be hard to think about it now in August, but come January or so, there will be nothing like a hot wood stove to back up to on a cold morning. An air tight wood stove can be a useful source of heat, but an open fireplace, regardless of how attractive, will actually remove heat from a room.

Wood can be a renewable energy source but just how “green” is it? Not all that much. There is much waste when wood is harvested for fuel, it’s call the “roots and shoots” issue. The roots below ground and the unused branches and leaves mean that a lot of biomass is wasted.

The biggest drawback about use of wood as fuel is the burning. Any time something burns varying amounts of noxious products are produced. Fine particulates damage respiratory systems and cause asthma, especially in children. Polycyclic Aromatic Hydrocarbons produced by combustion are carcinogenic. Carbon Monoxide production can be deadly. It interferes with oxygen absorption in the blood and result in acute respiratory failure or chronic obstructive pulmonary disease.

It is estimated that over 4 million premature deaths a year can be blamed on cooking and heating with biomass, essentially all in the underdeveloped parts of the world.

Go Solar

The amount of solar energy available to the United States is overwhelming. With today’s Photovoltaic technology, 16 per cent efficient PV panels, the total energy needs of the country could be met using a land area of only 8,000 square miles. This is an incredibly small area compared to the 3.8 million square miles of total land area. All the solar panels we need to power the country could fit in a fraction of Elko County in Northeast Nevada.

Just imagine, miners don’t need to die underground to extract coal. Mountain tops don’t need to be blown off and pushed into valleys to get at a coal seam. We wouldn’t need to worry about whether fracking wastes pollute our ground water, or bust up the foundations of homes to access natural gas. We don’t need parking lots full of high level radioactive waste from nuclear power plants. Yes, you read that right. Our only plan for the storage of high level radioactive wastes, hot for tens of thousands of years, is to store the waste in concrete containers around the sites of nuclear plants.

The health of the public would be improved and incidentally the cost of healthcare lowered as we no longer would have have all the untoward things in the air that cause problems. Not burning any fossil fuels means less lung irritants such as fine particulates. Less heavy metals that cause nerve damage, less acid rain, less ozone, and the list goes on and on.

Rather than produce all the energy in a fraction of one county in Nevada, we could spread it out to the individual states. The US uses a total of about 4 trillion kWh per year. Closer to home, Arkansas uses about 50 billion kWh per year. To meet that need we would only use about 100 square miles, less than a tenth of the area of Arkansas County in the southeast part of the state. Or let’s make each county generate their share. For Pope County we need a scant 2 square miles out of 831. It’s easy to see that we have plenty of free, sustainable sunlight and the land foot print needed is not even an issue. We will also need to upgrade our transmission network, but still that’s doable. The real fly in the ointment is storage.

The aforementioned calculations of land area needed are for full power, 24/7 year around, assuming we have storage for when the sun doesn’t shine due to time of day, season or weather. This a problem but not an insurmountable one. Elon Musk, the manufacturer of the Tesla electric car, and Space X reusable rockets is building a huge battery factory in Sparks, Nevada. The battery factory will occupy a building covering an area equal to 95 football fields.

The factory will be powered exclusively by solar electric power, with energy to spare. The batteries built in this factory are lithium based and are intended for his fleet of electric cars, but it shows that really large scale production of all aspects of sustainable energy are not just something in the distant future but are close at hand.

Solar Based Solar Energy

A major drawback of most if not all sustainable sources of energy is the matter of intermittency. Power can’t be generated by wind turbines if the wind doesn’t blow, and solar panels don’t generate power when the sun doesn’t shine.

There are three ways to deal with this. One is to simply expect to use power when it is available. This is impractical for homes or hospitals or industries where power is necessary 24/7, but it is conceivable that certain industries could run their industrial processes when power is available. Sources such as wind and solar are intermittent, but reliably so. A major problem with this strategy is that expensive equipment can’t be used for sizable amounts of time, making the industry less efficient and therefore less competitive.

The obvious solution is energy storage for leveling the availability of power, and there are a number of different strategies. Pairing energy sources to level access to power may be possible in some cases. In some areas the wind blows more at night. This could be combined with daytime solar PV. Actually this is already occurring to some degree via our electrical grid that utilizes both wind and solar inputs.

The holy grail of sustainable but intermittent energy is inexpensive grid scale battery storage. This is a major forefront of sustainable energy research today. Some Japanese researchers are taking another tack however. What if you could find a place to put solar panels where the sun always shines, with no shadows or clouds, just sunlight 24/7. No problem, just head out into space about 20,000 miles. Solar panels are already hard at work powering hundreds, even thousands of satellites and of course the international space station.

The Japan Aerospace Exploration Agency (JAXA) has a 25 year plan to develop gigawatt scale solar panels in space and then beam that energy back to earth. For perspective the average nuclear power plant produces a little less than a gigawatt. The two reactors at Arkansas Nuclear one combined output is about 1.8 Gigawatts.

This will be a BIG project. To produce that kind of power requires an array of solar panels that weigh on the order of 10,000 tonnes and covers an area of a couple square miles, but this is the easy part. Getting that power back to earth is the really tricky part of the plan. The idea is to beam the power back from space via microwaves. Satellites in geosynchronous orbit would point a sending device towards an earthbound antenna which would absorb the microwave power, then convert it to electrical energy that could be sent to grid along with all the other energy sources.

We use microwave ovens to heat up cold cup of coffee, but in this application the power is sent only a few inches, not tens of thousands of miles. Microwaves are sent long distances in the form of radar, but the relative power level is extremely low. To beam relevant amounts of power tens of thousands of miles is the real challenge.

So far testing has only involved sending kilowatts of energy over a fraction of that distance. Stay tuned.

RIP David Bowie 1947-2016

National Security is More than Bombs

The focus of a previous Republican debate was national security. To a man (or woman) the only concern was for the security that comes from a bullet or battleship. Their strategies involved variations on sending our troops to die in Syria, greater involvement of the Arab nation’s troops, increased drone attacks and a strangely abundant call for carpet bombing.

Other kinds of security may come to mind on a national scale, food security is a biggie, and avoidance of floods and droughts, and disease vectors such as insect born infections, and epidemics, and heat waves and on and on from global warming and climate change. Bullets and battleships won’t help here, just the opposite. Instead of fighting we must work on agreeing so we can reach solutions.

Back to national security of the bombing kind. Last July the Department of Defense (DoD) released a report outlining possible threats to national security that could involve the military. “Global climate change will aggravate problems such as poverty, social tensions, environmental degradation, ineffectual leadership and weak political institutions that threaten stability in a number of countries…”

When the British exited the Indian subcontinent they partitioned the area into India and East and West Pakistan, based strictly on religious grounds. Later east Pakistan became Bangladesh. It is a small but populous, low-lying country. A predominantly Muslim country adjacent to a predominantly Hindu India. What happens when rising sea levels push 150 or so million Muslims “upslope” into Hindu India? The capital of Bangladesh is not coastal but still is just 4 meters above sea level. Even without forcing migration across borders, population concentration can cause strife.

Hardly any place on earth is immune from threats that could turn into military conflict. The melting of Arctic sea ice will bring several major nations into proximity in the area. Some of the area has ill-defined borders which when covered with ice weren’t much of an issue. Now those issues along with the seas are heating up.

Access to fresh water will surely become a flash point in the future. The high latitudes and low latitudes are predicted to get wetter, but the mid latitudes drier. There are already over a billion people with limited access to potable water and this may only get worse with global warming.

The DoD report emphasizes that the threat is real and requires planning to be prepared for the future. “The ability of the United States and other countries to cope with the risks and implications of climate change requires monitoring, analysis and integration of those risks into existing overall risk management measures, as appropriate for each combatant command, they added.”

A recurring theme in science fiction novels and movies has been the coming together of otherwise warring nations to fight a common enemy – space aliens. Will global warming be the threat not from space but from within which will bind us together as a world community? An important step was taken recently in Paris with a much heralded agreement among all nations. The meeting of world leaders has resulted in an international resolve to limit global warming to 2 degrees Celsius.

pv2

Alternative Energy Alternatives

So you want to be green, or at least greener, when it comes to your electricity use. There are a welter of options available. Here in Arkansas we are not blessed with sufficient wind resources to make homeowner wind very cost effective, so going green means solar photovoltaic systems (solar PV) are the best game going. But with this restriction there are still several different approaches to decarbonize your electricity.

In remote areas without grid connections, the only reasonable green electricity is with a solar PV system and batteries. The batteries are necessary not only to tide you over for when the sun doesn’t shine but also to stabilize the power to your home or cabin. Imagine on an otherwise sunny day a solar array is providing nicely for the home, but a cloud passes over. This would temporarily reduce the current, possibly to the point of damaging electronics, Hence batteries are essential. Just how many batteries needed is a function of how long will the sun not keep up with demand. On occasion in this area we can go for a week or two without much sun due to rain and clouds. The point is that this is the most expensive option due to the costs associated with the batteries.

Much more practical are so called “grid tied” solar arrays which essentially use the electrical grid as a battery. If you buy electricity from Entergy, SWEPCO, or AVEC for example, and you add solar panels to your home, the power company is your battery. When the sun shines your meter will slow down or actually run backwards sending power to the grid. At night or on rainy or cloudy days power is drawn back from the grid. Because Arkansas is a net metering state, when producing you are paid the same price as when you buy. Depending on how many panels you have you can replace some or all of your electrical needs. Currently costs are such that the payback period is about half the rated lifetime of the panels. You will recoup your initial investment in about a dozen years, and the panels will continue to produce for at least that many years to come.

All homes don’t have access to the southern sky on their property due to shading from trees or the terrain. That said you can still participate via community solar farms. The first community solar farm has begun near Little Rock. A developer is constructing a solar farm tied to Entergy’s grid. Any Entergy customer can basically buy a piece of the solar production. The buyer has their own meter which is aggregated with their home meter, just as if the solar panels were on their roof. Entergy deducts any power costs produced by the solar panels from the power costs at the home. The cost for this approach is somewhat higher as because of the costs for site development and land acquisition.

Yet one more option exists to green up your electricity. The green power costs for the aforementioned approaches all require some significant start up costs. Another alternative is to buy “green tickets” or participate in the purchase of Renewable Energy Credits. There are companies that will for a nominal charge on top of your actual electric bill, buy green energy. The additional charge is used to buy power from green sources and send that electricity to the grid, which offsets electricity from fossil fueled sources. Basically you are subsidizing clean energy. You don’t own any equipment but your dollars go to green the environment.

Don’t Buy Oil

The horrible terrorist attack in Paris has drawn a number of responses as to what to do. Both French and US forces have launched bombing raids against ISIS forces in Syria. Many are calling to again put “boots on the ground” – a euphemism for send sending more of our sons and daughters off to die. With irrational fear trumping compassion, many governors want to have nothing to do with refugees from Syria.

Nether war nor fearfulness will solve our problems. It is time for a different perspective. The chaos in the middle east cannot continue without money to pay the fighters and buy the weapons and ammunition. Much of the money to fund the terrorists comes from the sale of oil. A step was taken with the bombing raids recently when over a hundred oil tanker trucks were destroyed. These were tankers that ISIS used to sell oil on the black market. As long as they have access to the oil, ways will be found to sell it. Additionally cash from the Gulf States flows directly to ISIS. It is not the official positions of the governments of the Gulf States, but rather private donors, made rich through the sale of oil, who are contributing to ISIS.

If the terrorists will find a way to sell the oil they control, and the riches of the Gulf States donors will continue to flow to the terrorists, what is to be done? Starve the beast. Stop buying oil. Not just the black market oil or the oil produced by the Emirates, but all oil. If we don’t buy the black market oil, we go somewhere else to buy oil. But someone else will buy the oil. Same for the Gulf States oil. We buy instead from Venezuela or Nigeria. But then someone else buys the Gulf oil. The problem is that oil is a very fungible commodity. Within limits, oil is oil, no matter where it comes from.

The answer is to stop using and therefore stop buying, oil. If we completely withdraw from the market, we will effect a dramatic drop in the price of crude oil. It’s a simple matter of supply and demand. We in the United States constitute a scant 5 percent of the world population, we consume over 20 percent of the world’s resources including oil. The drop in prices means less revenue from the sale of the black market oil and lower revenues for the emirates, hence less money to fuel terror. Transitioning to an electric economy fueled with wind and solar has its costs, but so does waging war.

Transitioning away from the use of oil will happen eventually as oil on the planet runs out, why not start now and help to stabilize geopolitics in the process. Why not start now to reduce pressure on the climate that comes from burning the oil? Why not stop now to help clean the air to reduce health care costs. A final benefit would be that we could become world leaders in sustainable energy technology.