Tag Archives: ocean acidification

Climate Ocean Linkage

In recent years there seems to be somewhat of a kerfuffle over the use of the terms Global Warming and Climate Change. Some in denial about the scientific concerns for changes in our planetary environment have suggested that “they” have changed the terminology to confuse the public. Or denialists claim that the term climate change is employed to cover up for the fact that the planet is not actually warming. Nothing could be further from the truth.

Both terms have been around and in use for years by scientists and mean different things. Realistically climate change is a result of global warming and includes many derived effects in addition to warming. The best way to look at is yet more terminology. Anthropogenically (man-made) driven changes to our planet include overall warming, which directly drives things such as warmer land and sea temperatures, the melting of the polar ice sheets and the recession of glaciers. All of the above has been going on and accurately measured for a couple of centuries. The rate of change is not always constant but the trend is undeniable.

The warming is due to something called radiative forcing. Certain gases produced through human activities, mainly burning fossil fuels, absorb infrared energy (heat ) in the atmosphere. The heat is trapped in the atmosphere rather than radiated out to space. Essentially planetary heat gain and heat loss are out of balance. Carbon Dioxide not only drives the heat cycle but also negatively impacts the oceans.

The oceans are getting warmer due to the direct heating effect, and as there is more water from melting ice, the salinity or saltiness of the oceans is decreasing. Coral bleaching is being observed around the world. Bleaching is the term given to the die-off of coral due to heat and acidity. All that is left is the lifeless exoskeletons which appear white without the living matter present. Coral makes up the reefs that constitute the nurseries of the much of the ocean fish populations.

Wetlands on the continental shelves are being drown from rising sea levels. Wetlands also constitute nurseries for fin fish and shellfish stocks which are threatened. As the water levels rise the brackish water moves farther inland. Jellyfish, which have little nutritional value and therefore aren’t part of a food chain seem to be replacing other valuable organisms around the globe.

The world’s oceans are actually acting to moderate the rate of global warming by absorbing some the Carbon Dioxide from the atmosphere, but this comes at a cost. As the Carbon Dioxide from the atmosphere dissolves in the oceans, it reacts chemically to become more acidic. The same effect is achieved in bottled soda drinks. Carbon Dioxide is the stuff that makes a soft drink fizzy, and also more tart, due to the acidity. The acidity of oceans is directly proportional to the amount of Carbon dioxide absorbed. The worst case scenario is that Calcium Carbonate, the stuff of shells and the bones of animals won’t form.

All these changes are being accelerated by what are known as positive feed back loops. As sea ice melts the surface of the earth becomes less reflective. Less reflectivity means more heat absorption, which leads to more sea ice melting. The longer we delay action the more difficult our predicament becomes.

Mean Coal

To say that every time you flip a light switch, you kill another coal miner would be an outrageous and unsupportable allegation, but we need to think about the costs, in addition to the electric bill, of keeping the lights on.

Close to half of the electricity produced in the U.S. comes from burning coal, and a lot of it. Current use is about a billion tons of coal a year. The costs we pay directly include the actual costs of extraction of the coal, and additional costs tangentially related to coal extraction. The tragic deaths of 29 miners in West Virginia forces us to see these additional costs.

In addition to the deaths from accidents are the more significant but less dramatic deaths from diseases associated with coal mining. Black lung disease is estimated to take 1,000- 3,000 thousand lives per year. Chronic, non-lethal conditions such as related cardiopulmonary diseases affect many, many more miners. If the coal companies pay the health care costs associated with mining, then the cost is added to the price we pay for electricity, but the emotional costs are immeasurable and born by the miners and their families.

We literally have to decide what a life is worth. How much are we willing to spend on our electricity to prevent another death through greater but much more costly safety regulations? Put more bluntly, how many deaths and how much debilitating illness will we tolerate to save money on our electric bill?

Costs which we bear collectively but outside the cost of electricity are more insidious. Severe environmental degradation occurs when mountain top removal strategies are employed to get at coal seams. The tops of mountains are blasted and pushed into surrounding valleys. Acid drainage from various mining techniques can destroy virtually all life in affected watersheds. Emissions from the burning of coal include numerous toxic metals such as mercury, cadmium, lead and arsenic. More radionuclides are released to the environment from burning coal than the total fuel cycle of nuclear reactors. Coal combustion is the major contributor to global warming and and changes in ocean chemistry through acidification.

So the question becomes what do you want to pay for your electricity, in dollars, lives and the environment you leave to our children. The most important thing you can do is examine how much energy you use. You really don’t need kilowatt-hours of electricity. What you want is a warm in the winter, cool in the summer, well-lit house. Or a successful business that meets the customer’s needs.

To a surprising degree, this can be achieved through the utilization of what Amory Lovins calls “negawatts.” That’s the energy you don’t use through efficiency. It’s better than a free lunch, it is a lunch that pays you to eat it! Examples abound: LED light bulbs, attic insulation, shade trees, and clotheslines just to name a few.
Even if we don’t act responsibly, ultimately we will power the world without burning carbon because we will have used up it all up. But we can act responsibly, we can decide that the adoption of a world powered by truly sustainable energy is our best and only future.


Biofuel is Inefficient

The United States attained the position of a superpower to a very large degree by our ability to utilize fossil fuels. Our way of life requires burning massive amounts of those fossil fuels. The wastes released by burning these fuels is leading to global warming and ocean acidification. If we want to preserve any semblance of a natural environment on this planet we must stop.

To maintain our lifestyle we have to adopt energy production systems that are free from carbon pollution and have long term sustainability. Direct solar, wind, and biofuels derived from crops are three strategies being exploited on a small scale already.

These three energy sources all derive from the sun but are they of equal efficiency? The short answer is NO, in capital letters. Not only are biofuels very inefficient in terms of land use, but also compete with food crops for acreage, fertilizer, and water.

Although the direct tax credits for biofuels like Ethanol and Biodiesel have been discontinued, we continue to subsidize these energy sources by crop price supports and mandates for biofuel use. This is certainly good for agribusiness, but is it good for society?

Consider the productivity of Ethanol from corn. In the United States, we use about half the corn we grow for ethanol production, roughly 50 million acres per year. For this we get 3 billion gallons of gasoline equivalent from ethanol. The problem is that we use over 130 billion gallons of gasoline a year. If we put every arable acre of land in the country in corn (580 million acres), we still would only be able to produce less than half of the fuel we need.

And we would have nothing to eat! The problem with biofuel is that photosynthetic efficiency is very low. That’s why it took hundreds of millions of years to accumulate the fossil fuels were are now consuming.

Of course, there are alternatives to biofuel.

wind turbines

wind turbines

If that same land area is used for wind turbines, solar thermal or photovoltaic applications, much more energy can be harvested. The 60 gallons gasoline equivalent per acre from corn ethanol represents less than 2000 kilowatt-hours per acre per year. Dedicate that same land mass to wind turbines with “good” winds and you get 130,000 kilowatt-hours per acre per year. And the land beneath the wind farm is still available for crops or pasture.

Photovoltaic systems are even more productive.rooftop_PV Virtually anywhere in the US, 800,000 kilowatt-hours per acre per year is attainable with current technology, That is 400 times as efficient as corn ethanol. We don’t need cropland, we can do it on our roofs. We get to eat.

In summary, photosynthesis is a very poor choice when it comes to energy production because it is so inefficient and it competes with food crops for land and water. Solar energy production methods such as photovoltaics and wind with current technology can sustainably power our future, now.

Ocean Acidification and Global Warming

The planet passed another milestone this week, nothing dramatic just a way point towards the inexorable collapse of ocean fisheries. The milestone is the the fact that the atmosphere now is at 400 parts per million (PPM) Carbon Dioxide, a condition not seen in over 3 million years. Whereas the composition of the atmosphere and climate change slowly over time without human intervention, the unprecedented change now is happening faster than has ever been seen before.

Human activities such as the burning of fossil fuels and deforestation are adding Carbon Dioxide (CO2) to the atmosphere at a geometrically increasing rate. Global_Carbon_Emissions.svg This was happening long before the recent technological advances which have increased the rate that we can produce oil and gas here in the United States. Those advances may look good for energy independence but serve to exacerbate the rate of global warming hence climate change via the release of CO2 to the atmosphere.

If you wondered why I mentioned the ocean earlier here’s why. Of the CO2 added each year to the atmosphere about a quarter is absorbed by the oceans. A lot of gases dissolve in water. If oxygen didn’t dissolve in water, there would be no fish in the seas. But CO2 is unique among atmospheric gases because not only does it dissolve, it also reacts. Carbon Dioxide reacts with water to form carbonic acid.
This is the same stuff of soda pop, it adds tartness to a beverage. It is not a problem for us because we have systems in our bodies which can buffer, basically neutralize, the acidity. No such system exists in the open oceans. If you add more CO2 to the oceans they become more acidic. And this can be a problem of catastrophic proportions.

The shells of many many organisms will not form or actually dissolve in the presence of too much acidity, from the littlest limpets to the corals of the Great Barrier Reef. And herein lies the possibility of a catastrophe. The coral reefs are the nurseries of the ocean.Coral_reef_locations It is here where the food chain begins, and it is here where the ocean fisheries will end if the corals die off. They are already stressed by higher ocean temperatures. Caribbean corals are experiencing a condition known as bleaching, actually dieing. Increased acidity can add to the die-off.

And now there is evidence of acidity impacting ocean organisms. For ocean organisms, the canary in the coal mine is a little known group of animals called sea butterflies. LimacinaHelicinaNOAA Shell thinning among the sea butterflies is occurring making them more susceptible to predation. They occupy the antarctic ocean. Gases are more soluble in cold water so it is not surprising that the effects of acidification of the ocean will be observed in the antarctic ocean first. Just as the canary is more sensitive to toxic gases, the sea butterfly in the antarctic ocean is more sensitive to acidity.

The question becomes just how long do we go on polluting the atmosphere and the oceans? How much damage to the biosphere is enough to convince us to change our ways? H. L. Mencken said it best: It is the nature of the human species to reject what is true but unpleasant, and to embrace what is obviously false but comforting.