Tag Archives: sustainable energy

The Green New Deal

The Green New Deal is a proposal to address global warming and economic inequality. It is widely feared by conservatives as a proposal designed to take away freedom – and cars and money and hamburgers and airplanes. Nonsense.
What it is is a very broad brush plan to eliminate the use of fossil fuels and the release of other greenhouse gases in ten years. Although the timeline is unreasonable, the objective of necessity will be accomplished in the longer term.
Under the plan, sustainable energy sources will be expanded to eliminate the use of fossil fuels for electricity production. Wind and solar with battery backing can eliminate the need for any fossil fuel use for electricity production. This is already underway, as the use of coal has been cut in half in just the last two to three decades.
At the same time, grid-scale batteries are becoming a thing. The City of Fayetteville will soon begin utilizing a ten megawatt solar panel system with energy storage in batteries – intermittency is not an issue with battery backup. Entergy is planning to close two coal fired plants and is building its own solar farms.
In our economy, the transportation sector is the largest user of fossil fuels. Electrification of transportation is in its infancy but happening none the less. Tesla, the biggest manufacturer of electric cars, has sold over a half-million vehicles since they began in 2012. Electric long haul trucks, semis, are in development and will hit the highways in 2020. Electrification of the rails is a no-brainer, it exists already on a limited scale and can be expanded nation-wide.
A tougher nut is aviation. Jet fuel, essentially kerosene made from crude oil, is an ideal energy source as it is very energy dense. To eliminate the use of fossil fuels from aviation will require either of a couple of solutions. The most likely, especially in the short term is to manufacture fuel synthetically from renewable sources.
Biodiesel from oil crops like soybeans is a possibility but would compete with cropland for food production. Better would be the use of waste organic matter as a feedstock for fuel production. This is already happening but needs to be done more efficiently.
Electrification of aviation has already been achieved but is a long way from commercial airlines’ scale. A battery-powered single engine plane with a range of four hundred miles has been flown in England.
The cost of the total conversion to sustainable energy systems will require considerable investment in research and infrastructure, but at the same time it will create quality jobs in an increasingly automated economy. The increased tax revenues from these new jobs can offset some of the costs.
Then there is the issue of what is the cost of doing nothing. Hurricanes in the East, flooding in the Midwest, and wildfires in the West are already costing hundreds of billions of dollars a year and will only get worse from inaction. Our future depends on facing the reality of climate change. The sooner we address the issue the less costly it will be.

Favoring the Sun

Polling shows that a clear majority of Arkansans, 60 to 70 percent give or take, recognize that global warming is happening. Without any polling data, we can only guess the everybody given a choice would favor clean air over polluted air. One method to reduce the rate of global warming and clean the air is to generate electricity from solar panels. Keeping the lights on in a house at night or through a week or two of wintery overcast requires one of two options, a battery bank or buying power from a utility during those periods.

The latter is by far the most common as batteries, where utility power is available, are far more expensive. A common solution is a so-called grid-tied array. People with rooftop solar panels remain connected to the utility grid so that they can get power at night. During the day they can generate the power they need from the sun. To make solar power more attractive most states have some form of net metering.

Net metering is achieved via a bi-directional meter. At night when solar panels are inactive, the meter runs normally, but during sunny periods when the solar panels produce more power than is consumed in the home, the meter runs backward. The homeowner is at these times a net producer, essentially a little power company selling to the utility.

Act 464, 2019 addresses some issues with solar energy production. It allows for third-party leasing. Essentially this allows a homeowner to rent his roof space to another company for placement of solar panels. It also allows for larger net metered arrays so a business can take advantage of the sun to power their facility. A debate exists as to how the solar panel owner is rewarded for their excess production. The simplest and current method in Arkansas is that excess production is rewarded at the same rate as consumption. If in a given billing cycle there is an excess production, credit for that production is carried forward.

Utility executives say that this makes them buy power at a retail rate. Of course, they want to buy power at a wholesale rate, then sell at a retail rate to maintain profitability. But that is an oversimplification. Utilities pay different rates for power depending on demand, so there is no single wholesale rate. High demand times calls for the purchase of expensive “peaking” power. Conversely during low demand times equipment is idled which also has a cost.

Power demands vary by both season and time of day, but one thing is clear. Demand for electricity is always higher during the day than at night. Wouldn’t it be neat if there were a way of producing power during the day when it is needed but not at night so no utility equipment is idled? Solar generated electricity is nicely matched to demand which can serve to lower overall costs to the utility and at the same time clean the air and slow global warming.

The act has good and bad points, but overall it is supported by several environmental organizations.

Dr. Bob Allen, Ph.D., is Emeritus Professor of Chemistry, Arkansas Tech University.

Biofuel from Seaweed

A relatively new contender for a source for biofuels, ethanol from seaweed, has come to the fore. Ethanol is blended with gasoline, commonly a ten percent blend in gasoline or less frequently E-85, a blend of eighty-five percent ethanol with fifteen percent gasoline. The latter is used extensively in Brazil. First a little background on making ethanol by traditional means.

The most common method for making fuel ethanol is fermentation of sugar with yeast. The sugar itself can be had directly from sugar cane, sugar beets or various fruit juices or indirectly from any source of starch such as grains or potatoes. Enzymes obtained from malted barley convert the large polymeric starch into small molecules which the yeast can use as a substrate for fermentation. The process has been known for over five thousand years. The oldest evidence of writing is cuneiform tablets found in modern day Iraq, then known as Sumeria. Some of these ancient tablets have records for beer production and distribution.

Virtually all ethanol produced in the United States is derived from corn and that is a problem on several levels. First and foremost is the fact that the process of capturing energy from sunlight is very inefficient compared to solar panels or wind turbines. Large swathes of land must be dedicated to energy production which otherwise would be suitable for food production. Ethanol from corn also consumes large amounts of fresh water and degrades the soil over time.

Ethanol can hypothetically be produced from plant fiber (cellulose) rather than starch, hence waste plant matter such as grass clippings and leaves could be turned into fuel. Although cellulosic ethanol has been studied intensely for decades, no commercial production has yet been achieved.

Now back to ethanol from seaweed. It’s recently been reported that ethanol can be made from seaweed using a genetically engineered bacteria. This is possible because the chemistry of seaweed is fundamentally different from land plants. Seaweed is comprised of large alginate molecules rather than cellulose or starch.

E. Coli, a bacteria common in the intestines of mammals and birds has been modified so that it has the enzymes necessary to disassemble the seaweed. This releases small molecules similar to sugar just as barley malt releases sugar from starch. A second modification of the genes in the bacteria allow metabolic processes that convert the sugar equivalent to ethanol, hence acting like yeast.

There are a number of advantages to the use of seaweed for fuel production. There is no diversion of food crops to fuel production. Seaweed can be harvested as a perennial crop from coastal areas or salt marshes so there is no impact on freshwater or land erosion. Seaweed production could even have a positive effect in certain coastal areas. Fertilizer runoff from the grain belt ends up in the Mississippi and ultimately the Gulf of Mexico. This nutrient-laden water causes unwanted algae blooms which consume oxygen and create a “dead zone.” If seaweed were farmed in this location it could absorb the nutrients for its growth and then be harvested for fuel production- a win-win situation.

Next time you have a little sake (the ethanol portion ) with your sushi (the wrapper part) consider that it could be coming from the same seaweed, all the while cleaning the environment.

Dr. Bob Allen, Ph.D., is Emeritus Professor of Chemistry at Arkansas Tech University

Trump Pulls Out

It is now clear now that the current administration has withdrawn from the Paris Agreement for specious reasons. Trump will take us off the world stage, away from 195 countries who do recognize the risks of ignoring global warming, ocean acidification, and climate change.

Global warming as a concept is not new. Svante Arrhenius, a Swedish chemist and Nobel laureate wrote in 1896 on the risks of continued burning of fossil fuels and the resultant accumulation of Carbon Dioxide (CO2)in the atmosphere. [On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground] The concentration of CO2 in the atmosphere had been stable stable for hundreds of thousands of years – under 300 parts per million (PPM). In under 200 years we have raised the concentration to the current value of over 400 PPM, 150% of the value at the start of the industrial revolution.

Despite the relatively simple physical principals involved and despite the evidence from air and water temperatures, rising sea levels, and melting ice President Trump still thinks that global warming is a hoax. He seems fixated on the idea that developing sustainable energy supplies will drag our economy down. Is there evidence of such?

Very simply -No. Germany has installed more solar photovoltaic energy systems per capita than any other country, yet they are running a trade surplus with the United States. On a good day Denmark can produce 100 % of its energy from wind turbines and runs a considerable trade surplus with the United States. Ironically, much of their surplus involves selling wind turbine technology to us. We do have a small industry manufacturing wind turbine blades, but the company is Danish. China has leapt to the head of the pack for producing solar panels and we all know about their trade imbalance.

What do the captains of industry here think? Big fossil fuel producers such as Exxon-Mobil support the agreement. Even coal companies support the agreement. Walmart supports the agreement. Of course forward looking companies like Alphabet, the parent company of Google, Apple, Tesla support the agreement. Polls shows that the majority of Americans in every state, across the political spectrum support the agreement.

The agreement that we are walking away from is first and foremost voluntary. The agreement would in no way allow foreign influence of our laws or sovereignty. The agreement calls for international goals for reducing the rate of global warming by reducing the release of CO2 and other greenhouse gasses.

The US goal was a reduction of greenhouse gas emissions by 27 % of 2005 emissions by 2025. This is doable with a combination of energy efficiency, sustainable technologies such as wind and solar and switching from carbon intensive coal to natural gas. These changes to our economy are already underway and by participating in the agreement we show the world that we care about collective actions for all humanity, even for all life on this planet.

By not joining the agreement we turn away from 195 countries and join with Syria, torn by a violent civil war, and Nicaragua, who thinks the agreement doesn’t go far enough.

PV Primer, 2017

The cost of photovoltaic systems (panels and inverter) has dropped to about 1 to 2 dollars per watt. At this price, including the 30 % federal tax credit, systems have payback times in less than 7 years, regardless of size. This assumes a cost of about 10 cents a kilowatt hour (kW-hr) for electricity.

Here are a number of nuts and bolts issues for those interested in solar power. First and foremost you must have a location with southern exposure. Even a small amount of shade can seriously reduce energy production. For most this means a roof top location, but it needn’t be if you have the space to put the array on the ground. The simplest mounting puts the panels flat on the roof. The pitch of the roof is not all that important as long as it faces south.

The amount of space needed for an array of course varies as to how much total power you want to produce. Different manufacturers make panels in different sizes (watts) but the total space needed is the same because all PV panels have the same efficiency, about 15 %. Five 100 watt panels will take up the same space as one 500 watt panel. One kW requires about 80 square feet of space.

A big decision is whether the array is isolated or connected to the electrical grid. Grid-tied systems here in Arkansas can take advantage of net metering. This means that the power produced by the panels can actually make a meter run backwards if they are producing more power than the home is consuming at any time. About the only disadvantage of a grid-tied system is that when the line goes down, so does the solar power production. This is necessary to protect power line workers.

The alternative to grid-tied is to go entirely off line by buffering production with batteries. This avoids the aforementioned problem, but greatly increases the cost and “hassle factor” of the system. This is only practical when connection to the grid is cost prohibitive, as in remote locations.

The total amount of energy produced by a system is obtained by the total wattage of a system. For example a 1 kilowatt system can produce a maximum of one kilowatt hour only when the sun angle is ideal. Averaged over a year, a simple rule of thumb is that you can get 4 hours of net production per day. Hence a 1 kW system can be expected to produce 4 kW-hrs per day, more some days, less others.

Let’s use an average consumption of 1000 kW-hrs per month (close to the average in Arkansas) to determined a system sized to replace 100 % of electric needs. 1000 kW-hrs per month means 33 kw-hrs per day. Divide that by 4 to get a a little over 8 kW system. To allow for some inefficiencies say we use a 9 kW system. At 1.5 dollars a watt, the total cost would be 13,500 $. The 30% federal tax rebate brings the final cost down to 9,450 $. Sales taxes and installation will add to the cost, but these numbers can be used to approximate a cost if you are interested in going solar.

Wind Power Transmission Line

A federal decision on the Plains and Eastern Clean Line High Voltage Direct Current line is imminent. This proposed 700 plus mile long transmission line will extend from the panhandle of Oklahoma, through Pope County, and on to Memphis. If approved and built it will allow for the movement of large amounts of wind generated power from the midwest to parts east where it can be used to replace coal fired generating plants.

The route already approved by the National Environmental Policy Act (NEPA) will pass through central Pope county. A substation just north of Atkins will allow Arkansans a piece of the power from the line. For perspective the line will cross Big Piney Creek near where it crosses Highway 164.

The line and others like it are necessary to reduce our need for coal which fouls the atmosphere in multiple ways. There is a superabundance of clean, relatively inexpensive energy waiting to be tapped in the midwest, the only need being transmission.

The Line is not without its detractors however, especially those in the path of the powerline right-of-way (ROW.) It will require a couple of hundred foot wide ROW with 150 foot towers spaced about 5 to the mile. The land within the ROW can be used safely for any purpose with the exception of forestry – crops, hay fields, and pastures are acceptable uses for the area. Landowners will be compensated for the ROW but they complain that compensation is insufficient.

It really boils down to “Not In My Backyard” (NIMBY.) This is not surprising, nobody wants their view of a skyline marred by powerlines. But powerlines are a fact of modern life. Anyone who is connected to the electrical grid benefits from numerous folks having yielded a ROW to get that power to their home or business.

One suggestion to remove the negative visual impact would be to bury the line underground. It has been done locally on a very small scale. In some newer subdivisions the distribution lines are buried but not for far, as it is quite expensive compared to overhead lines.

The relative cost of burying high voltage transmission lines is assumed to be prohibitive as it is just not done with the exception of lines that cross large bodies of water where it is the only possible alternative.

To bury a transmission line requires serious disruption, trenching then back filling, not just pastures and hay fields but sidewalks, roadways, and even rivers and wet lands. For forest land, a clear cut ROW would be necessary to be able to bring in the heavy equipment necessary to excavate and lay the line.

One of the benefits of buried lines is that they are less susceptible to weather related outages. The other side of the coin is when an outage occurs in an underground line it is harder to locate and harder to access, changing repair times from hours for overhead lines to weeks for underground lines.

Cost estimates are in the range of 2 to 10 times more expensive than overhead lines. Power companies across the land, whether private like Entergy or public like the Arkansas Electric Coops, have made the decision to stay with overhead lines, wherever possible.

State Support for Sustainable Energy

The data are in and the numbers are crunched. 2015 is officially the hottest year for the planet in recorded history. Last year raced past the previous hottest year, 2014. In fact the 10 hottest years on record have occurred since 1998.

The science is clear, the heating is due in the main to burning fossil fuels. Governments around the world are developing strategies to decarbonize their economies. Here in the United States we have federal various tax credits which lower the cost for both individuals and businesses to be less reliant on fossil fuel combustion. Purchase tax credits are available for energy efficiency and sustainable energy production. Also, production tax credits for wind produced energy are available.

Variable levels of subsidization from the states for both purchase and production of sustainable energy is also available. These can come as purchase savings: income tax credits, income tax deductions, sales tax rebates, and cash rebates. Production of sustainable energy, for example solar photovoltaic systems or wind turbines are subsidized by feed-in tariffs or net metering. Levels of support also vary by sector such as homeowners, coops, or for profit businesses.

California is generally recognized as the nation’s leader in clean renewable energy because they have committed to a renewable portfolio of 50% by 2030. This means they expect 50% of energy production in the state to come from renewable energy. Their success thus far is driven by a combination of all the above, credits for efficiency, the purchase of equipment, and for energy produced.

An example of a production subsidy is a feed-in tariff. This is a rate structure for electricity where the producer of clean energy, say a homeowner with solar panels, signs a long term contract to produce energy to the grid at a premium price. In Michigan the average cost of electricity is about 11 cents a kilowatt hour (kWh). Producers with a feed-in tariff are paid 24 cents a kWh. Payback times at this rate could be less than five years!

Here in Arkansas we are about in the middle of the pack, renewable energy support-wise. There is essentially no state purchase support, but net metering provides some assistance for the production of clean, carbon free energy. Net metered systems in Arkansas use bidirectional meters. When the sun shines and production is in excess of consumption the meter runs backwards, at the same rate as it runs forwards when consuming energy. There no additional access charge or fee for net metered systems. What this means is that the home producer is paid retail cost for the power sent to the grid.

Less valuable but still of some help are net metered systems where the producer is only paid the power company’s avoided cost, the wholesale rate. This doesn’t reward the expense of providing clean power to the grid as the avoided cost is the cost of the oldest, cheapest, and usually coal fired power production. Nevada recently downgraded their net metered systems to pay only the wholesale price for production, rather than the retail price.

Only two states, Tennessee and South Dakota, have no production support for distributed clean energy.

Nuclear is Not the Answer

RusselvillePowerplant

James Hansen is the climate scientist who first loudly and persistently proclaimed a risk to society of global warming and the consequent climate change and acidification of the oceans. Recently he and a few others suggested that a vigorous expansion of nuclear power is the only option for producing enough power to completely replace fossil fuels for energy production.

To achieve this goal would require the construction worldwide of over one hundred reactors a year, every year till 2050. As the United States uses something like twenty percent of the world’s energy, our share of the nuclear construction would be about 20 to 25 reactors every year. Conservatively that would be close to 700 nuclear reactors. Based on population that would mean about 7 new reactors in Arkansas alone.

This is a construction rate far, far beyond the heyday of reactor construction in the 1970s. It is just not going to happen for several reasons. Hansen has blamed environmental concerns for blocking the expansion of the nuclear power industry and there may be some truth to this. Past catastrophic nuclear reactor failures loom over the industry. And the seemingly intractable, politically at least, problem of permanent storage of high level nuclear wastes. The best we have come up with so far is on site storage in concrete containers – essentially the radioactive spent fuel rods are placed in casks standing around in parking lots adjacent to the reactors.

Environmental concerns are not the real issue, it is that nuclear power can’t compete economically. The extremely long planning and construction time make essentially impossible to stay on budget. The Union of Concerned Scientists report that the cost for the planning, construction, and licensing has gone from an estimated 2 billion dollars in 2002 to an astounding 9 billion in 2009.

Meanwhile the carbon free competition – efficiency, wind, and solar PV have see an opposite cost curve. For comparison, the cost of a 2 megawatt wind turbine is about 3 million dollars. For an equivalent amount of power produced by a nuclear reactor, the cost is a little over a billion dollars. For large scale commercial solar photovoltaic arrays the cost is about 2.5 billion dollars. Most importantly the cost curves for sustainable energy are downward whereas for nuclear they are upward.

The fuel costs for nuclear power are now relatively modest, but in a scenario with 700 nuclear reactors requiring Uranium, the cost will be substantially greater. Most likely fuel reprocessing will be necessary to produce new fuel but also to deal with the waste stream from all these reactors. Reprocessing fuel will add to costs and increase the risk of additional handling of radioactive material. Both accidents at reprocessing plants as occurred to at Kerr-McGee facility in Oklahoma, or the possibility of diversion to terrorists as weapons.

The future may see some expansion of nuclear reactors, as they serve an important function for baseload power, but something will have to be done to control costs. Savings via deregulation is a non starter. In fact increased regulation may save money. Standardized designs and construction methods may be able to contain costs somewhat. Additional subsidization of the nuclear industry via taxpayer backed insurance is a must. When it comes to the nuclear industry; capitalism, meet socialism.

Solar Based Solar Energy

A major drawback of most if not all sustainable sources of energy is the matter of intermittency. Power can’t be generated by wind turbines if the wind doesn’t blow, and solar panels don’t generate power when the sun doesn’t shine.

There are three ways to deal with this. One is to simply expect to use power when it is available. This is impractical for homes or hospitals or industries where power is necessary 24/7, but it is conceivable that certain industries could run their industrial processes when power is available. Sources such as wind and solar are intermittent, but reliably so. A major problem with this strategy is that expensive equipment can’t be used for sizable amounts of time, making the industry less efficient and therefore less competitive.

The obvious solution is energy storage for leveling the availability of power, and there are a number of different strategies. Pairing energy sources to level access to power may be possible in some cases. In some areas the wind blows more at night. This could be combined with daytime solar PV. Actually this is already occurring to some degree via our electrical grid that utilizes both wind and solar inputs.

The holy grail of sustainable but intermittent energy is inexpensive grid scale battery storage. This is a major forefront of sustainable energy research today. Some Japanese researchers are taking another tack however. What if you could find a place to put solar panels where the sun always shines, with no shadows or clouds, just sunlight 24/7. No problem, just head out into space about 20,000 miles. Solar panels are already hard at work powering hundreds, even thousands of satellites and of course the international space station.

The Japan Aerospace Exploration Agency (JAXA) has a 25 year plan to develop gigawatt scale solar panels in space and then beam that energy back to earth. For perspective the average nuclear power plant produces a little less than a gigawatt. The two reactors at Arkansas Nuclear one combined output is about 1.8 Gigawatts.

This will be a BIG project. To produce that kind of power requires an array of solar panels that weigh on the order of 10,000 tonnes and covers an area of a couple square miles, but this is the easy part. Getting that power back to earth is the really tricky part of the plan. The idea is to beam the power back from space via microwaves. Satellites in geosynchronous orbit would point a sending device towards an earthbound antenna which would absorb the microwave power, then convert it to electrical energy that could be sent to grid along with all the other energy sources.

We use microwave ovens to heat up cold cup of coffee, but in this application the power is sent only a few inches, not tens of thousands of miles. Microwaves are sent long distances in the form of radar, but the relative power level is extremely low. To beam relevant amounts of power tens of thousands of miles is the real challenge.

So far testing has only involved sending kilowatts of energy over a fraction of that distance. Stay tuned.

RIP David Bowie 1947-2016

National Security is More than Bombs

The focus of a previous Republican debate was national security. To a man (or woman) the only concern was for the security that comes from a bullet or battleship. Their strategies involved variations on sending our troops to die in Syria, greater involvement of the Arab nation’s troops, increased drone attacks and a strangely abundant call for carpet bombing.

Other kinds of security may come to mind on a national scale, food security is a biggie, and avoidance of floods and droughts, and disease vectors such as insect born infections, and epidemics, and heat waves and on and on from global warming and climate change. Bullets and battleships won’t help here, just the opposite. Instead of fighting we must work on agreeing so we can reach solutions.

Back to national security of the bombing kind. Last July the Department of Defense (DoD) released a report outlining possible threats to national security that could involve the military. “Global climate change will aggravate problems such as poverty, social tensions, environmental degradation, ineffectual leadership and weak political institutions that threaten stability in a number of countries…”

When the British exited the Indian subcontinent they partitioned the area into India and East and West Pakistan, based strictly on religious grounds. Later east Pakistan became Bangladesh. It is a small but populous, low-lying country. A predominantly Muslim country adjacent to a predominantly Hindu India. What happens when rising sea levels push 150 or so million Muslims “upslope” into Hindu India? The capital of Bangladesh is not coastal but still is just 4 meters above sea level. Even without forcing migration across borders, population concentration can cause strife.

Hardly any place on earth is immune from threats that could turn into military conflict. The melting of Arctic sea ice will bring several major nations into proximity in the area. Some of the area has ill-defined borders which when covered with ice weren’t much of an issue. Now those issues along with the seas are heating up.

Access to fresh water will surely become a flash point in the future. The high latitudes and low latitudes are predicted to get wetter, but the mid latitudes drier. There are already over a billion people with limited access to potable water and this may only get worse with global warming.

The DoD report emphasizes that the threat is real and requires planning to be prepared for the future. “The ability of the United States and other countries to cope with the risks and implications of climate change requires monitoring, analysis and integration of those risks into existing overall risk management measures, as appropriate for each combatant command, they added.”

A recurring theme in science fiction novels and movies has been the coming together of otherwise warring nations to fight a common enemy – space aliens. Will global warming be the threat not from space but from within which will bind us together as a world community? An important step was taken recently in Paris with a much heralded agreement among all nations. The meeting of world leaders has resulted in an international resolve to limit global warming to 2 degrees Celsius.