Thoughts on Oxygen – Part 2

Based on genetic evidence across all life it appears that the earliest organism called LUCA, short for Last Universal Common Ancestor, contained a wealth of cellular components that handled molecular Oxygen otherwise known as O2. This in light of the fact that there was scant Oxygen present in the atmosphere, a fraction of a percent compared to the current concentration of 21 percent. Why?

Most likely is the fact that Oxygen is a very reactive gas, and it reacts by snatching electrons away from other molecules. This creates two other kinds of chemical compounds, free radicals which are electrically neutral but very reactive, and cations which are positively charged ions which also are reactive. When Oxygen or a few derivative molecules react with other components of cells or tissues they cause damage which can lead to cell death and even death of the whole organism.

One description of growing old is little more than the accumulation of cellular damage due to exposure to Oxygen. Just one example is that Oxygen reacts with a component of our skin called collagen. Over time the damage leads to reduced elasticity. This results in “brittle” skin which is more easily damaged by physical abuse. The skin also loses its tone and becomes saggy. These are oxidation reactions just like the rusting of iron and cooking oil becoming rancid. When you burn something you are oxidizing it, hence growing old is slowly burning up.

The earliest anaerobic single celled organisms had a myriad of cell components to protect themselves from oxidative damage even in an atmosphere which contained little oxygen. Today most of what we recognize as living things such as plants and animals, are aerobes. We require Oxygen to drive the processes by which we generate energy. We need the energy to do all the work of our bodies. To detoxify poisons in our liver. To move us from couch to dinner table and back. To fuel the nerve impulses to our brain that allow us to read newspaper columns.

Interestingly, our brains consume close to 25 % of all the Oxygen we use. Compare that to the heart muscle which only uses 12 % or the kidneys which need only 7 % of our Oxygen. The question now is how did we go from Oxygen being a deadly poison when life operated anaerobically (without oxygen) to our current state where it is demanded? The answer lies in a number of evolutionary advances. Those cell components that were used to protect anaerobic organisms were shifted in function by random mutations to do the job of aerobic metabolism. The advantage is that if you can control the reactivity of Oxygen, you can put it to good use to do the work of the body, but only if you control it.

Evolution does not require new constructions from whole cloth. Slight changes in a macromolecule allow it to be repurposed. Life is complex, but not so complex it requires a designer. Evolution only requires random mutations and a long time scale.

Leave a Reply

Your email address will not be published. Required fields are marked *